ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Series available for loan
    Series available for loan
    Washington, DC [u.a.] : United States Gov. Print. Off.
    Associated volumes
    Call number: S 90.0003(1236)
    In: U.S. Geological Survey circular
    Type of Medium: Series available for loan
    Pages: vi, 36 S
    ISBN: 0607964049
    Series Statement: U.S. Geological Survey circular 1236
    Classification:
    Regional Geology
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-02
    Description: Alu insertions have contributed to 〉11% of the human genome and ~30–35 Alu subfamilies remain actively mobile, yet the characterization of polymorphic Alu insertions from short-read data remains a challenge. We build on existing computational methods to combine Alu detection and de novo assembly of WGS data as a means to reconstruct the full sequence of insertion events from Illumina paired end reads. Comparison with published calls obtained using PacBio long-reads indicates a false discovery rate below 5%, at the cost of reduced sensitivity due to the colocation of reference and non-reference repeats. We generate a highly accurate call set of 1614 completely assembled Alu variants from 53 samples from the Human Genome Diversity Project (HGDP) panel. We utilize the reconstructed alternative insertion haplotypes to genotype 1010 fully assembled insertions, obtaining 〉99% agreement with genotypes obtained by PCR. In our assembled sequences, we find evidence of premature insertion mechanisms and observe 5' truncation in 16% of Alu Ya5 and Alu Yb8 insertions. The sites of truncation coincide with stem-loop structures and SRP9/14 binding sites in the Alu RNA, implicating L1 ORF2p pausing in the generation of 5' truncations. Additionally, we identified variable Alu J and Alu S elements that likely arose due to non-retrotransposition mechanisms.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-03-30
    Description: Africa is inferred to be the continent of origin for all modern human populations, but the details of human prehistory and evolution in Africa remain largely obscure owing to the complex histories of hundreds of distinct populations. We present data for more than 580,000 SNPs for several hunter-gatherer populations: the Hadza and Sandawe of Tanzania, and the ≠Khomani Bushmen of South Africa, including speakers of the nearly extinct N|u language. We find that African hunter-gatherer populations today remain highly differentiated, encompassing major components of variation that are not found in other African populations. Hunter-gatherer populations also tend to have the lowest levels of genome-wide linkage disequilibrium among 27 African populations. We analyzed geographic patterns of linkage disequilibrium and population differentiation, as measured by FST, in Africa. The observed patterns are consistent with an origin of modern humans in southern Africa rather than eastern Africa, as is generally assumed. Additionally, genetic variation in African hunter-gatherer populations has been significantly affected by interaction with farmers and herders over the past 5,000 y, through both severe population bottlenecks and sex-biased migration. However, African hunter-gatherer populations continue to maintain the highest levels of genetic diversity in the world.
    Keywords: Feature Articles
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-05-03
    Description: Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale--particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry. Our analysis provides a comprehensive overview of the normal pattern of structural variation present in these genomes, refining the location of 1,695 structural variants. We find that 50% were seen in more than one individual and that nearly half lay outside regions of the genome previously described as structurally variant. We discover 525 new insertion sequences that are not present in the human reference genome and show that many of these are variable in copy number between individuals. Complete sequencing of 261 structural variants reveals considerable locus complexity and provides insights into the different mutational processes that have shaped the human genome. These data provide the first high-resolution sequence map of human structural variation--a standard for genotyping platforms and a prelude to future individual genome sequencing projects.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2424287/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2424287/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kidd, Jeffrey M -- Cooper, Gregory M -- Donahue, William F -- Hayden, Hillary S -- Sampas, Nick -- Graves, Tina -- Hansen, Nancy -- Teague, Brian -- Alkan, Can -- Antonacci, Francesca -- Haugen, Eric -- Zerr, Troy -- Yamada, N Alice -- Tsang, Peter -- Newman, Tera L -- Tuzun, Eray -- Cheng, Ze -- Ebling, Heather M -- Tusneem, Nadeem -- David, Robert -- Gillett, Will -- Phelps, Karen A -- Weaver, Molly -- Saranga, David -- Brand, Adrianne -- Tao, Wei -- Gustafson, Erik -- McKernan, Kevin -- Chen, Lin -- Malig, Maika -- Smith, Joshua D -- Korn, Joshua M -- McCarroll, Steven A -- Altshuler, David A -- Peiffer, Daniel A -- Dorschner, Michael -- Stamatoyannopoulos, John -- Schwartz, David -- Nickerson, Deborah A -- Mullikin, James C -- Wilson, Richard K -- Bruhn, Laurakay -- Olson, Maynard V -- Kaul, Rajinder -- Smith, Douglas R -- Eichler, Evan E -- 3 U54 HG002043/HG/NHGRI NIH HHS/ -- HG004120/HG/NHGRI NIH HHS/ -- P01 HG004120/HG/NHGRI NIH HHS/ -- P01 HG004120-01/HG/NHGRI NIH HHS/ -- U54 HG002043-07S1/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 May 1;453(7191):56-64. doi: 10.1038/nature06862.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genome Sciences and Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18451855" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosome Inversion/genetics ; Continental Population Groups/genetics ; Euchromatin/genetics ; Gene Deletion ; Genetic Variation/*genetics ; Genome, Human/*genetics ; Geography ; Haplotypes ; Humans ; Mutagenesis, Insertional/genetics ; *Physical Chromosome Mapping ; Polymorphism, Single Nucleotide/genetics ; Reproducibility of Results ; *Sequence Analysis, DNA
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-02-13
    Description: It is generally accepted that the extent of phenotypic change between human and great apes is dissonant with the rate of molecular change. Between these two groups, proteins are virtually identical, cytogenetically there are few rearrangements that distinguish ape-human chromosomes, and rates of single-base-pair change and retrotransposon activity have slowed particularly within hominid lineages when compared to rodents or monkeys. Studies of gene family evolution indicate that gene loss and gain are enriched within the primate lineage. Here, we perform a systematic analysis of duplication content of four primate genomes (macaque, orang-utan, chimpanzee and human) in an effort to understand the pattern and rates of genomic duplication during hominid evolution. We find that the ancestral branch leading to human and African great apes shows the most significant increase in duplication activity both in terms of base pairs and in terms of events. This duplication acceleration within the ancestral species is significant when compared to lineage-specific rate estimates even after accounting for copy-number polymorphism and homoplasy. We discover striking examples of recurrent and independent gene-containing duplications within the gorilla and chimpanzee that are absent in the human lineage. Our results suggest that the evolutionary properties of copy-number mutation differ significantly from other forms of genetic mutation and, in contrast to the hominid slowdown of single-base-pair mutations, there has been a genomic burst of duplication activity at this period during human evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751663/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751663/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marques-Bonet, Tomas -- Kidd, Jeffrey M -- Ventura, Mario -- Graves, Tina A -- Cheng, Ze -- Hillier, LaDeana W -- Jiang, Zhaoshi -- Baker, Carl -- Malfavon-Borja, Ray -- Fulton, Lucinda A -- Alkan, Can -- Aksay, Gozde -- Girirajan, Santhosh -- Siswara, Priscillia -- Chen, Lin -- Cardone, Maria Francesca -- Navarro, Arcadi -- Mardis, Elaine R -- Wilson, Richard K -- Eichler, Evan E -- HG002385/HG/NHGRI NIH HHS/ -- P51-RR013986/RR/NCRR NIH HHS/ -- R01 HG002385/HG/NHGRI NIH HHS/ -- R01 HG002385-08/HG/NHGRI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG003079-06/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Feb 12;457(7231):877-81. doi: 10.1038/nature07744.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genome Sciences, University of Washington and the Howard Hughes Medical Institute, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19212409" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Animals ; Catarrhini/classification/*genetics ; Chromosome Mapping ; *Evolution, Molecular ; *Gene Duplication ; Genome/*genetics ; Humans ; Polymorphism, Genetic ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-03-08
    Description: Helicobacter pylori, a chronic gastric pathogen of human beings, can be divided into seven populations and subpopulations with distinct geographical distributions. These modern populations derive their gene pools from ancestral populations that arose in Africa, Central Asia, and East Asia. Subsequent spread can be attributed to human migratory fluxes such as the prehistoric colonization of Polynesia and the Americas, the neolithic introduction of farming to Europe, the Bantu expansion within Africa, and the slave trade.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Falush, Daniel -- Wirth, Thierry -- Linz, Bodo -- Pritchard, Jonathan K -- Stephens, Matthew -- Kidd, Mark -- Blaser, Martin J -- Graham, David Y -- Vacher, Sylvie -- Perez-Perez, Guillermo I -- Yamaoka, Yoshio -- Megraud, Francis -- Otto, Kristina -- Reichard, Ulrike -- Katzowitsch, Elena -- Wang, Xiaoyan -- Achtman, Mark -- Suerbaum, Sebastian -- R02GM63270/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Mar 7;299(5612):1582-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Max-Planck Institut fur Infektionsbiologie, 10117 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12624269" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Agriculture ; Americas ; Asia ; Bacterial Proteins/genetics ; Bayes Theorem ; Continental Population Groups ; *Emigration and Immigration ; Ethnic Groups ; Europe ; Genes, Bacterial ; Genetic Variation ; *Genetics, Population ; Geography ; Helicobacter Infections/*microbiology/transmission ; Helicobacter pylori/classification/*genetics/isolation & purification ; Humans ; Indians, North American ; Language ; *Polymorphism, Genetic ; Polynesia ; Recombination, Genetic ; Social Problems ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-02-19
    Description: The genetic structure of the indigenous hunter-gatherer peoples of southern Africa, the oldest known lineage of modern human, is important for understanding human diversity. Studies based on mitochondrial and small sets of nuclear markers have shown that these hunter-gatherers, known as Khoisan, San, or Bushmen, are genetically divergent from other humans. However, until now, fully sequenced human genomes have been limited to recently diverged populations. Here we present the complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and a Bantu from southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, including 13,146 novel amino acid variants. In terms of nucleotide substitutions, the Bushmen seem to be, on average, more different from each other than, for example, a European and an Asian. Observed genomic differences between the hunter-gatherers and others may help to pinpoint genetic adaptations to an agricultural lifestyle. Adding the described variants to current databases will facilitate inclusion of southern Africans in medical research efforts, particularly when family and medical histories can be correlated with genome-wide data.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890430/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890430/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schuster, Stephan C -- Miller, Webb -- Ratan, Aakrosh -- Tomsho, Lynn P -- Giardine, Belinda -- Kasson, Lindsay R -- Harris, Robert S -- Petersen, Desiree C -- Zhao, Fangqing -- Qi, Ji -- Alkan, Can -- Kidd, Jeffrey M -- Sun, Yazhou -- Drautz, Daniela I -- Bouffard, Pascal -- Muzny, Donna M -- Reid, Jeffrey G -- Nazareth, Lynne V -- Wang, Qingyu -- Burhans, Richard -- Riemer, Cathy -- Wittekindt, Nicola E -- Moorjani, Priya -- Tindall, Elizabeth A -- Danko, Charles G -- Teo, Wee Siang -- Buboltz, Anne M -- Zhang, Zhenhai -- Ma, Qianyi -- Oosthuysen, Arno -- Steenkamp, Abraham W -- Oostuisen, Hermann -- Venter, Philippus -- Gajewski, John -- Zhang, Yu -- Pugh, B Franklin -- Makova, Kateryna D -- Nekrutenko, Anton -- Mardis, Elaine R -- Patterson, Nick -- Pringle, Tom H -- Chiaromonte, Francesca -- Mullikin, James C -- Eichler, Evan E -- Hardison, Ross C -- Gibbs, Richard A -- Harkins, Timothy T -- Hayes, Vanessa M -- R01 GM087472/GM/NIGMS NIH HHS/ -- R01 HG004909/HG/NHGRI NIH HHS/ -- R01GM087472/GM/NIGMS NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2010 Feb 18;463(7283):943-7. doi: 10.1038/nature08795.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pennsylvania State University, Center for Comparative Genomics and Bioinformatics, 310 Wartik Lab, University Park, Pennsylvania 16802, USA. scs@bx.psu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164927" target="_blank"〉PubMed〈/a〉
    Keywords: African Continental Ancestry Group/*genetics ; Asian Continental Ancestry Group/genetics ; Ethnic Groups/*genetics ; European Continental Ancestry Group/genetics ; Exons/genetics ; Genetics, Medical ; Genome, Human/*genetics ; Humans ; Phylogeny ; Polymorphism, Single Nucleotide/genetics ; South Africa/ethnology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-01-29
    Description: 'Orang-utan' is derived from a Malay term meaning 'man of the forest' and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (N(e)) expanded exponentially relative to the ancestral N(e) after the split, while Bornean N(e) declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060778/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060778/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Locke, Devin P -- Hillier, LaDeana W -- Warren, Wesley C -- Worley, Kim C -- Nazareth, Lynne V -- Muzny, Donna M -- Yang, Shiaw-Pyng -- Wang, Zhengyuan -- Chinwalla, Asif T -- Minx, Pat -- Mitreva, Makedonka -- Cook, Lisa -- Delehaunty, Kim D -- Fronick, Catrina -- Schmidt, Heather -- Fulton, Lucinda A -- Fulton, Robert S -- Nelson, Joanne O -- Magrini, Vincent -- Pohl, Craig -- Graves, Tina A -- Markovic, Chris -- Cree, Andy -- Dinh, Huyen H -- Hume, Jennifer -- Kovar, Christie L -- Fowler, Gerald R -- Lunter, Gerton -- Meader, Stephen -- Heger, Andreas -- Ponting, Chris P -- Marques-Bonet, Tomas -- Alkan, Can -- Chen, Lin -- Cheng, Ze -- Kidd, Jeffrey M -- Eichler, Evan E -- White, Simon -- Searle, Stephen -- Vilella, Albert J -- Chen, Yuan -- Flicek, Paul -- Ma, Jian -- Raney, Brian -- Suh, Bernard -- Burhans, Richard -- Herrero, Javier -- Haussler, David -- Faria, Rui -- Fernando, Olga -- Darre, Fleur -- Farre, Domenec -- Gazave, Elodie -- Oliva, Meritxell -- Navarro, Arcadi -- Roberto, Roberta -- Capozzi, Oronzo -- Archidiacono, Nicoletta -- Della Valle, Giuliano -- Purgato, Stefania -- Rocchi, Mariano -- Konkel, Miriam K -- Walker, Jerilyn A -- Ullmer, Brygg -- Batzer, Mark A -- Smit, Arian F A -- Hubley, Robert -- Casola, Claudio -- Schrider, Daniel R -- Hahn, Matthew W -- Quesada, Victor -- Puente, Xose S -- Ordonez, Gonzalo R -- Lopez-Otin, Carlos -- Vinar, Tomas -- Brejova, Brona -- Ratan, Aakrosh -- Harris, Robert S -- Miller, Webb -- Kosiol, Carolin -- Lawson, Heather A -- Taliwal, Vikas -- Martins, Andre L -- Siepel, Adam -- Roychoudhury, Arindam -- Ma, Xin -- Degenhardt, Jeremiah -- Bustamante, Carlos D -- Gutenkunst, Ryan N -- Mailund, Thomas -- Dutheil, Julien Y -- Hobolth, Asger -- Schierup, Mikkel H -- Ryder, Oliver A -- Yoshinaga, Yuko -- de Jong, Pieter J -- Weinstock, George M -- Rogers, Jeffrey -- Mardis, Elaine R -- Gibbs, Richard A -- Wilson, Richard K -- G0501331/Medical Research Council/United Kingdom -- HG002238/HG/NHGRI NIH HHS/ -- HG002385/HG/NHGRI NIH HHS/ -- MC_U137761446/Medical Research Council/United Kingdom -- P01 AG022064/AG/NIA NIH HHS/ -- R01 GM059290/GM/NIGMS NIH HHS/ -- R01 GM59290/GM/NIGMS NIH HHS/ -- R01 HG002939/HG/NHGRI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG003079-08/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Medical Research Council/United Kingdom -- England -- Nature. 2011 Jan 27;469(7331):529-33. doi: 10.1038/nature09687.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA. dlocke@wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21270892" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Centromere/genetics ; Cerebrosides/metabolism ; Chromosomes ; Evolution, Molecular ; Female ; Gene Rearrangement/genetics ; Genetic Speciation ; *Genetic Variation ; Genetics, Population ; Genome/*genetics ; Humans ; Male ; Phylogeny ; Pongo abelii/*genetics ; Pongo pygmaeus/*genetics ; Population Density ; Population Dynamics ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-02-05
    Description: Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077050/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077050/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mills, Ryan E -- Walter, Klaudia -- Stewart, Chip -- Handsaker, Robert E -- Chen, Ken -- Alkan, Can -- Abyzov, Alexej -- Yoon, Seungtai Chris -- Ye, Kai -- Cheetham, R Keira -- Chinwalla, Asif -- Conrad, Donald F -- Fu, Yutao -- Grubert, Fabian -- Hajirasouliha, Iman -- Hormozdiari, Fereydoun -- Iakoucheva, Lilia M -- Iqbal, Zamin -- Kang, Shuli -- Kidd, Jeffrey M -- Konkel, Miriam K -- Korn, Joshua -- Khurana, Ekta -- Kural, Deniz -- Lam, Hugo Y K -- Leng, Jing -- Li, Ruiqiang -- Li, Yingrui -- Lin, Chang-Yun -- Luo, Ruibang -- Mu, Xinmeng Jasmine -- Nemesh, James -- Peckham, Heather E -- Rausch, Tobias -- Scally, Aylwyn -- Shi, Xinghua -- Stromberg, Michael P -- Stutz, Adrian M -- Urban, Alexander Eckehart -- Walker, Jerilyn A -- Wu, Jiantao -- Zhang, Yujun -- Zhang, Zhengdong D -- Batzer, Mark A -- Ding, Li -- Marth, Gabor T -- McVean, Gil -- Sebat, Jonathan -- Snyder, Michael -- Wang, Jun -- Ye, Kenny -- Eichler, Evan E -- Gerstein, Mark B -- Hurles, Matthew E -- Lee, Charles -- McCarroll, Steven A -- Korbel, Jan O -- 1000 Genomes Project -- 062023/Wellcome Trust/United Kingdom -- 077009/Wellcome Trust/United Kingdom -- 077014/Wellcome Trust/United Kingdom -- 077192/Wellcome Trust/United Kingdom -- 085532/Wellcome Trust/United Kingdom -- G0701805/Medical Research Council/United Kingdom -- G1000758/Medical Research Council/United Kingdom -- P01 HG004120/HG/NHGRI NIH HHS/ -- P41 HG004221/HG/NHGRI NIH HHS/ -- P41 HG004221-01/HG/NHGRI NIH HHS/ -- P41 HG004221-02/HG/NHGRI NIH HHS/ -- P41 HG004221-03/HG/NHGRI NIH HHS/ -- P41 HG004221-03S1/HG/NHGRI NIH HHS/ -- P41 HG004221-03S2/HG/NHGRI NIH HHS/ -- P41 HG004221-03S3/HG/NHGRI NIH HHS/ -- R01 GM059290/GM/NIGMS NIH HHS/ -- R01 GM081533/GM/NIGMS NIH HHS/ -- R01 GM081533-01A1/GM/NIGMS NIH HHS/ -- R01 GM081533-02/GM/NIGMS NIH HHS/ -- R01 GM081533-03/GM/NIGMS NIH HHS/ -- R01 GM081533-04/GM/NIGMS NIH HHS/ -- R01 GM59290/GM/NIGMS NIH HHS/ -- R01 HG004719/HG/NHGRI NIH HHS/ -- R01 HG004719-01/HG/NHGRI NIH HHS/ -- R01 HG004719-02/HG/NHGRI NIH HHS/ -- R01 HG004719-02S1/HG/NHGRI NIH HHS/ -- R01 HG004719-03/HG/NHGRI NIH HHS/ -- R01 HG004719-04/HG/NHGRI NIH HHS/ -- R01 MH091350/MH/NIMH NIH HHS/ -- RC2 HG005552/HG/NHGRI NIH HHS/ -- RC2 HG005552-01/HG/NHGRI NIH HHS/ -- RC2 HG005552-02/HG/NHGRI NIH HHS/ -- U01 HG005209/HG/NHGRI NIH HHS/ -- U01 HG005209-01/HG/NHGRI NIH HHS/ -- U01 HG005209-02/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Feb 3;470(7332):59-65. doi: 10.1038/nature09708.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21293372" target="_blank"〉PubMed〈/a〉
    Keywords: DNA Copy Number Variations/*genetics ; Gene Duplication/genetics ; Genetic Predisposition to Disease/genetics ; *Genetics, Population ; Genome, Human/*genetics ; *Genomics ; Genotype ; Humans ; Mutagenesis, Insertional/genetics ; Reproducibility of Results ; Sequence Analysis, DNA ; Sequence Deletion/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-07-05
    Description: Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria-Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822165/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822165/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prado-Martinez, Javier -- Sudmant, Peter H -- Kidd, Jeffrey M -- Li, Heng -- Kelley, Joanna L -- Lorente-Galdos, Belen -- Veeramah, Krishna R -- Woerner, August E -- O'Connor, Timothy D -- Santpere, Gabriel -- Cagan, Alexander -- Theunert, Christoph -- Casals, Ferran -- Laayouni, Hafid -- Munch, Kasper -- Hobolth, Asger -- Halager, Anders E -- Malig, Maika -- Hernandez-Rodriguez, Jessica -- Hernando-Herraez, Irene -- Prufer, Kay -- Pybus, Marc -- Johnstone, Laurel -- Lachmann, Michael -- Alkan, Can -- Twigg, Dorina -- Petit, Natalia -- Baker, Carl -- Hormozdiari, Fereydoun -- Fernandez-Callejo, Marcos -- Dabad, Marc -- Wilson, Michael L -- Stevison, Laurie -- Camprubi, Cristina -- Carvalho, Tiago -- Ruiz-Herrera, Aurora -- Vives, Laura -- Mele, Marta -- Abello, Teresa -- Kondova, Ivanela -- Bontrop, Ronald E -- Pusey, Anne -- Lankester, Felix -- Kiyang, John A -- Bergl, Richard A -- Lonsdorf, Elizabeth -- Myers, Simon -- Ventura, Mario -- Gagneux, Pascal -- Comas, David -- Siegismund, Hans -- Blanc, Julie -- Agueda-Calpena, Lidia -- Gut, Marta -- Fulton, Lucinda -- Tishkoff, Sarah A -- Mullikin, James C -- Wilson, Richard K -- Gut, Ivo G -- Gonder, Mary Katherine -- Ryder, Oliver A -- Hahn, Beatrice H -- Navarro, Arcadi -- Akey, Joshua M -- Bertranpetit, Jaume -- Reich, David -- Mailund, Thomas -- Schierup, Mikkel H -- Hvilsom, Christina -- Andres, Aida M -- Wall, Jeffrey D -- Bustamante, Carlos D -- Hammer, Michael F -- Eichler, Evan E -- Marques-Bonet, Tomas -- 090532/Wellcome Trust/United Kingdom -- 260372/European Research Council/International -- DP1 ES022577/ES/NIEHS NIH HHS/ -- DP1ES022577-04/DP/NCCDPHP CDC HHS/ -- GM100233/GM/NIGMS NIH HHS/ -- HG002385/HG/NHGRI NIH HHS/ -- R01 GM095882/GM/NIGMS NIH HHS/ -- R01 GM100233/GM/NIGMS NIH HHS/ -- R01 HG002385/HG/NHGRI NIH HHS/ -- R01_HG005226/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jul 25;499(7459):471-5. doi: 10.1038/nature12228. Epub 2013 Jul 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, PRBB, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23823723" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Animals ; Animals, Wild/genetics ; Animals, Zoo/genetics ; Asia, Southeastern ; Evolution, Molecular ; Gene Flow/genetics ; *Genetic Variation ; Genetics, Population ; Genome/genetics ; Gorilla gorilla/classification/genetics ; Hominidae/classification/*genetics ; Humans ; Inbreeding ; Pan paniscus/classification/genetics ; Pan troglodytes/classification/genetics ; Phylogeny ; Polymorphism, Single Nucleotide/genetics ; Population Density
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...