ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2019
    Description: Abstract Hypoxia, defined as dissolved oxygen (DO) 〈 2 mg/L, in the central basin of Lake Erie has been studied since the mid‐1900s. Even so, spatial patterns of hypoxia, and episodic hypoxia in nearshore areas where drinking water plant intakes are located, are not well characterized owing to limited observations and short‐term dynamics. We evaluated a physically based, DO model with respect to patterns of hypoxia observed in Lake Erie. The DO model used assigned rates of sediment and water column oxygen demand that were temperature dependent but otherwise spatially and temporally uniform. The DO model was linked to National Oceanic and Atmospheric Administration's (NOAA) Lake Erie Operational Forecasting System hydrodynamic model, an application of the Finite Volume Community Ocean Model (FVCOM). Model temperature and DO were compared with observations from ship‐based studies, real‐time sensor networks and an array of moored sensors that we deployed in 2017. In years with dominant southwesterly winds, persistent downwelling occurred along the south shore, which resulted in a thinner thermocline and earlier initiation of hypoxia along the south shore than the north. Occasional northeast winds temporarily reversed this pattern, causing upwelling along the south shore that brought hypoxic water to nearshore locations and water intakes. The DO model reproduced observed spatial and temporal patterns of hypoxia and revealed locations subject to episodes of hypoxia, including nearshore Ohio, north of Pelee Island, and near the Bass Islands. Model skill was limited in some respects, highlighting the importance of accurate simulation of the thermal structure and spatial patterns of oxygen demand rates.
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-28
    Description: Cyanobacterial harmful algal blooms (CHABs) are a problem in western Lake Erie, and in eutrophic fresh waters worldwide. Western Lake Erie is a large (3000 km 2 ), shallow (8 m mean depth), freshwater system. CHABs occur from July to October, when stratification is intermittent in response to wind and surface heating or cooling (polymictic). Existing forecast models give the present location and extent of CHABs from satellite imagery, then predict two-dimensional (surface) CHAB movement in response to meteorology. In this study, we simulated vertical distribution of buoyant Microcystis colonies, and 3D advection, using a Lagrangian particle model forced by currents and turbulent diffusivity from the Finite Volume Community Ocean Model (FVCOM). We estimated the frequency distribution of Microcystis colony buoyant velocity from measured size distributions and buoyant velocities. We evaluated several random-walk numerical schemes to efficiently minimize particle accumulation artifacts. We selected the Milstein scheme, with linear interpolation of the diffusivity profile in place of cubic splines, and varied the time step at each particle and step based on the curvature of the local diffusivity profile to ensure that the Visser time step criterion was satisfied. Inclusion of vertical mixing with buoyancy significantly improved model skill statistics compared to an advection-only model, and showed greater skill than a persistence forecast through simulation day 6, in a series of 26 hindcast simulations from 2011. The simulations and in-situ observations show the importance of subtle thermal structure, typical of a polymictic lake, along with buoyancy in determining vertical and horizontal distribution of Microcystis . This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...