ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
  • 1
    Publication Date: 2023-08-08
    Description: Many terrestrial silicate reservoirs display a characteristic depletion in Nb, which has been explained in some studies by the presence of reservoirs on Earth with superchondritic Nb/Ta. As one classical example, K-rich lavas from the Sunda rear-arc, Indonesia, have been invoked to tap such a high-Nb/Ta reservoir. To elucidate the petrogenetic processes active beneath the Java rear-arc and the causes for the superchondritic Nb/Ta in some of these lavas, we studied samples from the somewhat enigmatic Javanese rear-arc volcano Muria, which allow conclusions regarding the across-arc variations in volcanic output, source mineralogy and subduction components. We additionally report some data for an along-arc sequence of lavas from the Indonesian part of the Sunda arc, extending from Krakatoa in the west to the islands of Bali and Lombok in the east. We present major and trace element concentrations, Sr–Nd–Hf–Pb isotope compositions, and high-field-strength element (HFSE: Nb, Ta, Zr, Hf, W) concentrations obtained via isotope dilution and MC-ICP-MS analyses. The geochemical data are complemented by melting models covering different source compositions with slab melts formed at variable P–T conditions. The radiogenic isotope compositions of the frontal arc lavas in combination with their trace element systematics confirm previously established regional variations of subduction components along the arc. Melting models show a clear contribution of a sediment-derived component to the HFSE budget of the frontal arc lavas, particularly affecting Zr–Hf and W. In contrast, the K-rich rear-arc lavas tap more hybrid and enriched mantle sources. The HFSE budget of the rear-arc lavas is in particular characterized by superchondritic Nb/Ta (up to 25) that are attributed to deep melting involving overprint by slab melts formed from an enriched garnet–rutile-bearing eclogitic residue. Sub-arc slab melting was potentially triggered along a slab tear beneath the Sunda arc, which is the result of the forced subduction of an oceanic basement relief ~ 8 Myr ago as confirmed by geophysical studies. The purported age of the slab tear coincides with a paucity in arc volcanism, widespread thrusting of the Javanese basement crust as well as the short-lived nature of the K-rich rear-arc volcanism at that time.
    Description: Deutscher Akademischer Austauschdienst http://dx.doi.org/10.13039/501100001655
    Description: Gottfried Wilhelm Leibniz Universität Hannover (1038)
    Keywords: ddc:551.9 ; Rear-arc volcanism ; Superchondritic Nb/Ta ; Muria ; Sunda arc
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Abyssal peridotites are assumed to represent the mantle residue of mid-ocean-ridge basalts (MORBs). However, the osmium isotopic compositions of abyssal peridotites and MORB do not appear to be in equilibrium, raising questions about the cogenetic relationship between those two reservoirs. ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-28
    Description: Nature Geoscience 6, 871 (2013). doi:10.1038/ngeo1911 Authors: Judith A. Coggon, Ambre Luguet, Geoffrey M. Nowell & Peter W. U. Appel Partial melting of the Earth’s mantle is a key process in the generation of crustal material and the formation of continents. Crustal samples record the generation of crust up to 4.4 billion years (Gyr) ago, yet the complementary record in the mantle extends to only 3.3 Gyr ago, with sparse evidence for differentiation occurring 3.9–4.1 Gyr ago. Here we use the Pt–Os isotope chronometer to show that a Hadean record of mantle depletion is preserved in Earth’s oldest known ultramafic rocks, the Ujaragssuit Nunât intrusion of southwest Greenland. We identify two distinct age populations at approximately 4.1 and 2.9 Gyr. We suggest that the younger age population records a regional metamorphic event and the older one records mantle depletion. We also identify individual sample ages of up to 4.36 Gyr old, thus extending the record of large mantle-melting events into the Hadean. Furthermore, the preservation of Hadean model ages in Os-rich mantle-derived rocks supports the theory that re-enrichment of Os in the mantle during the Late Heavy Bombardment—after expected partitioning into the Earth’s core—occurred at least 0.2 Gyr earlier than previously thought. This also implies that the Earth could have been habitable by 4.1 Gyr ago.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-15
    Print ISSN: 1529-6466
    Electronic ISSN: 1943-2666
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-12-15
    Print ISSN: 1529-6466
    Electronic ISSN: 1943-2666
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Abstract Archean spherule layers represent the only currently known remnants of the early impact record on Earth. Based on the lunar cratering record, the small number of spherule layers identified so far contrasts to the high impact flux that can be expected for the Earth at that time. The recent discovery of several Paleoarchean spherule layers in the BARB5 and CT3 drill cores from the Barberton area, South Africa, drastically increases the number of known Archean impact spherule layers and may provide a unique opportunity to improve our knowledge of the impact record on the early Earth. This study is focused on the spherule layers in the CT3 drill core from the northeastern Barberton Greenstone Belt. We present highly siderophile element (HSE: Re, Os, Ir, Pt, Ru, and Pd) concentrations and Re‐Os isotope signatures for spherule layer samples and their host rocks in order to unravel the potential presence of extraterrestrial fingerprints within them. Most spherule layer samples exhibit extreme enrichments in HSE concentrations of up to superchondritic abundances in conjunction with, in some cases, subchondritic present‐day 187Os/188Os isotope ratios. This indicates a significant meteoritic contribution to the spherule layers. In contrast to some of the data reported earlier for other Archean spherule layers from the Barberton area, the CT3 core is significantly overprinted by secondary events. However, HSE and Re‐Os isotope signatures presented in this study indicate chondritic admixtures of up to (and even above) 100% chondrite component in some of the analyzed spherule layers. There is no significant correlation between HSE abundances and respective spherule contents. Although strongly supporting the impact origin of these layers and the presence of significant meteoritic admixtures, peak HSE concentrations are difficult to explain without postdepositional enrichment processes.
    Print ISSN: 1086-9379
    Electronic ISSN: 1945-5100
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: 〈span〉〈div〉Abstract〈/div〉The Re-Os isotopic system is largely considered the geochronometer of choice to date partial melting of terrestrial peridotites and in constraining the evolution of Earth's dynamics from the mantle viewpoint. While whole-rock peridotite Re-Os isotopic signatures are the core of such investigations, the Re-Os dating of individual peridotite minerals—base metal sulfides (BMS) and platinum group minerals (PGM)—that are the main hosts for Re and Os in the mantle peridotites came into play two decades ago.These nanometric-micrometric BMS and PGM display an extreme complexity and heterogeneity in their 〈sup〉187〈/sup〉Os/〈sup〉188〈/sup〉Os and 〈sup〉187〈/sup〉Re/〈sup〉188〈/sup〉Os signatures that result from the origin of the BMS±PGM grains (residual vs. meta-somatic), the nature of the metasomatic agents, the transport/precipitation mechanisms, BMS±PGM mineral-ogy, and subsequent Re/Os fractionation. Corresponding whole-rock host peridotites, typically plot within the 〈sup〉187〈/sup〉Os/〈sup〉188〈/sup〉Os and 〈sup〉187〈/sup〉Re/〈sup〉188〈/sup〉Os ranges defined by the BMS±PGM, clearly demonstrating that their Re-Os signatures represent the average of the different BMS±PGM populations. The difference between the 〈sup〉187〈/sup〉Os/〈sup〉188〈/sup〉Os ratios of the least radiogenic BMS±PGM and the respective host peridotite increases with the fertility of the peridotite reflecting the increasing contribution of metasomatic BMS±PGM to the whole-rock mass balance of Re and Os concentrations and Os isotope compositions. Corollaries to these observations are that (1) BMS may provide a record of much older partial melting event, pushing back in time the age of the lithospheric mantle stabilization, (2) if only whole-rock peridotite Re-Os isotopic measurements are possible, then the best targets for constraining the timing of lithospheric stabilization are BMS-free/BMS-poor ultra-refractory spinel-bearing peridotites with very minimal metasomatic overprint, as their 〈sup〉187〈/sup〉Os/〈sup〉188〈/sup〉Os signatures may be geologically meaningful, (3) while lherzolites are “fertile” in terms of their geochemical composition, they do not have a “primitive,” unmodified composition, certainly in terms of their highly siderophile elements (HSE) and Re-Os isotopic systematics, and (4) the combined Re-Os isotopic investigations of BMS and whole-rock in BMS-rich mantle peridotites would provide a complementary view on the timing and nature of the petrological events responsible for the chemical and isotopic evolution and destruction of the lithospheric mantle.In addition, the 〈sup〉187〈/sup〉Os/〈sup〉188〈/sup〉Os composition of the BMS±PGM (both residual and metasomatic) within any single peridotite may define several age clusters—in contrast to the single whole-rock value—and thus provide a more accurate picture of the complex petrogenetic history of the lithospheric mantle. When coupled with a detailed BMS±PGM petrographical study and whole-rock lithophile and HSE systematics, these BMS age clusters highlight the timing and nature of the petrological events contributing to the formation and chemical and isotopic evolution of the lithospheric mantle. These BMS±PGM age clusters may match regional or the local crustal ages, suggesting that the formation and evolution of the lithospheric mantle and its overlying crust are linked, providing mirror records of their geological and chemical history. This is, however, not a rule of thumb as clear evidence of crust-mantle age decoupling also exist.Although the BMS±PGM Re-Os model ages push back in time the stabilization of lithospheric mantle, the dichotomy between Archean cratonic and circum-cratonic peridotites, and post-Archean non-cratonic peridotites and tectonites is preserved. This ability of BMS±PGM to preserve older ages than their host peridotite also underscores their survival for billions of years without being reset or reequilibrated despite the complex petrogenetic processes recorded by their host mantle peridotites. As such, they are the mantle equivalents of crustal zircons. Preservation of such old signatures in “young” oceanic peridotites ultimately rules out the use of the Re-Os signatures in both oceanic peridotites and their BMS to estimate the timescales of isotopic homogenization of the convecting mantle.〈/span〉
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-01-26
    Description: To explain the elevated osmium isotope (186Os-187Os) signatures in oceanic basalts, the possibility of material flux from the metallic core into the crust has been invoked. This hypothesis conflicts with theoretical constraints on Earth's thermal and dynamic history. To test the veracity and uniqueness of elevated 186Os-187Os in tracing core-mantle exchange, we present highly siderophile element analyses of pyroxenites, eclogites plus their sulfides, and new 186Os/188Os measurements on pyroxenites and platinum-rich alloys. Modeling shows that involvement in the mantle source of either bulk pyroxenite or, more likely, metasomatic sulfides derived from either pyroxenite or peridotite melts can explain the 186Os-187Os signatures of oceanic basalts. This removes the requirement for core-mantle exchange and provides an effective mechanism for generating Os isotope diversity in basalt source regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luguet, Ambre -- Graham Pearson, D -- Nowell, Geoff M -- Dreher, Scott T -- Coggon, Judith A -- Spetsius, Zdislav V -- Parman, Stephen W -- New York, N.Y. -- Science. 2008 Jan 25;319(5862):453-6. doi: 10.1126/science.1149868.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Northern Centre for Isotopic and Elemental Tracing, Department of Earth Sciences, University of Durham, South Road, Durham DH1 3LE, UK. ambre.luguet@durham.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18218894" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-05-13
    Description: Plutons associated with a 1.4 Ga magmatic event intrude across southwestern Laurentia. The tectonic setting of this major magmatic province is poorly understood. Proposed melting models include anorogenic heating from the mantle, continental arc or transpressive orogeny, and anatexis from radiogenic heat buildup in thickened crust. Re-Os analyses of refractory mantle xenoliths from the Navajo volcanic field (NVF; central Colorado Plateau) yield Re depletion ages of 2.1–1.7 Ga, consistent with the age of the overlying Yavapai and Mazatzal crust. However, new Sm-Nd isotope data from clinopyroxene in peridotite xenoliths from NVF diatremes show a subset of xenoliths that plot on a ca. 1.4 Ga isochron, which likely reflects mantle melt production and isotopic resetting at 1.4 Ga. This suggests that Paleoproterozoic subcontinental lithospheric mantle was involved in the 1.4 Ga magmatic event. Our constraints support a subduction model for the generation of the 1.4 Ga granites but are inconsistent with rifting and anorogenic anatexis models, both of which would require removal of ancient lithosphere.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-01
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...