ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Midspan aerodynamic measurements for a three vane-four passage linear turbine vane cascade are given. The vane axial chord was 4.45 cm. Surface pressures and loss coefficients were measured at exit Mach numbers of 0.3, 0.7, and 0.9. Reynolds number was varied by a factor of six at the two highest Mach numbers, and by a factor of ten at the lowest Mach number. Measurements were made with and without a turbulence grid. Inlet turbulence intensities were less than I% and greater than IO%. Length scales were also measured. Pressurized air fed the test section, and exited to a low pressure exhaust system. Maximum inlet pressure was two atmospheres. The minimum inlet pressure for an exit Mach number of 0.9 was one-third of an atmosphere, and at a Mach number of 0.3, the minimum pressure was half this value. The purpose of the test was to provide data for verification of turbine vane aerodynamic analyses, especially at low Reynolds numbers. Predictions obtained using a Navier-Stokes analysis with an algebraic turbulence model are also given.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/TM-1998-208408 , E-11243 , NAS 1.15:208408 , Rept-98-GT-285 , Turbo; 2-5 Jun. 1998; Stockholm; Sweden
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Comparisons are shown between predictions and experimental data for blade and endwall heat transfer. The comparisons of computational domain parisons are given for both vane and rotor geometries over an extensive range of Reynolds and Mach numbers. Comparisons are made with experimental data from a variety of sources. A number of turbulence models are available for predicting blade surface heat transfer, as well as aerodynamic performance. The results of an investigation to determine the turbulence model which gives the best agreement with experimental data over a wide range of test conditions are presented.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-TM-107374 , NAS 1.15:107374 , E-10543 , Gas Turbine and Aeroengine Congress; 10-13 Jun.1996; Birmingham; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The proposed paper compares predicted turbine vane heat transfer for a rough surface over a wide range of test conditions with experimental data. Predictions were made for the entire vane surface. However, measurements were made only over the suction surface of the vane, and the leading edge region of the pressure surface. Comparisons are shown for a wide range of test conditions. Inlet pressures varied between 3 and 15 psia, and exit Mach numbers ranged between 0.3 and 0.9. Thus, while a single roughened vane was used for the tests, the effective rougness,(k(sup +)), varied by more than a factor of ten. Results were obtained for freestream turbulence levels of 1 and 10%. Heat transfer predictions were obtained using the Navier-Stokes computer code RVCQ3D. Two turbulence models, suitable for rough surface analysis, are incorporated in this code. The Cebeci-Chang roughness model is part of the algebraic turbulence model. The k-omega turbulence model accounts for the effect of roughness in the application of the boundary condition. Roughness causes turbulent flow over the vane surface. Even after accounting for transition, surface roughness significantly increased heat transfer compared to a smooth surface. The k-omega results agreed better with the data than the Cebeci-Chang model. However, the low Reynolds number k-omega model did not accurately account for roughness when the freestream turbulence level was low. The high Reynolds number version of this model was more suitable when the freestream turbulence was low.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2000-210219 , E-12338 , NAS 1.15:210219 , ASME-2000-GT-0217 , International Gas and Turbine and Aeroengine Technical Congress; 5-8 May 2000; Munich; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The paper presents benchmark experimental data on a gust response of an annular turbine cascade. The experiment was particularly designed to provide data for comparison with the results of a typical linearized gust-response analysis. Reduced frequency, Mach number, and incidence were varied independently. Except for the lowest reduced frequency, the gust velocity distribution was nearly sinusoidal. For the high inlet-velocity series of tests, the cascade was near choking. The mean flow was documented by measuring blade surface pressures and the cascade exit flow. High-response pressure transducers were used to measure the unsteady pressure distribution. Inlet-velocity components and turbulence parameters were measured using hot wire. In addition to the synchronous time-average pressure spectra, typical power spectra are included for several representative conditions.
    Keywords: AERODYNAMICS
    Type: NASA-TM-106776 , E-9227 , NAS 1.15:106776 , Turbo Expo 1995; 5-8 Jun. 1995; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Turbine vane heat transfer distributions obtained using an infrared camera technique are described. Infrared thermography was used because noncontact surface temperature measurements were desired. Surface temperatures were 80 C or less. Tests were conducted in a three-vane linear cascade, with inlet pressures between 0.14 and 1.02 atm, and exit Mach numbers of 0.3, 0.7, and 0.9, for turbulence intensities of approximately 1 and 10 percent. Measurements were taken on the vane suction side, and on the pressure side leading edge region. The designs for both the vane and test facility are discussed. The approach used to account for conduction within the vane is described. Midspan heat transfer distributions are given for the range of test conditions.
    Keywords: Aircraft Propulsion and Power
    Type: Paper-2000-GT-216 , Journal of Turbomachinery; 123; 168-177|45th International Gas Turbine and Aeroengine Congress and Exhibition; 8-11 Mar. 2000; Munich; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Turbine vane heat transfer distributions obtained using an infrared camera technique are described. Infrared thermography was used because noncontact surface temperature measurements were desired. Surface temperatures were 80 C or less. Tests were conducted in a three vane linear cascade, with inlet pressures between 0.14 and 1.02 atm., and exit Mach numbers of 0.3, 0.7, and 0.9, for turbulence intensities of approximately 1 and 10%. Measurements were taken on the vane suction side, and on the pressure side leading edge region. The designs for both the vane and test facility are discussed. The approach used to account for conduction within the vane is described. Midspan heat transfer distributions are given for the range of test conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2000-210220 , NAS 1.15:210220 , E-12339 , ASME-2000-GT-0216 , 45th International Gas Turbine and Aeroengine Technical Congress; 8-11 May 2000; Munich; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...