ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-08-01
    Description: Some studies of ocean climate model experiments suggest that regional changes in dynamic sea level could provide a valuable indicator of trends in the strength of the Atlantic meridional overturning circulation (MOC). This paper describes the use of a sequence of global ocean–ice model experiments to show that the diagnosed patterns of sea surface height (SSH) anomalies associated with changes in the MOC in the North Atlantic (NA) depend critically on the time scales of interest. Model hindcast simulations for 1958–2004 reproduce the observed pattern of SSH variability with extrema occurring along the Gulf Stream (GS) and in the subpolar gyre (SPG), but they also show that the pattern is primarily related to the wind-driven variability of MOC and gyre circulation on interannual time scales; it is reflected also in the leading EOF of SSH variability over the NA Ocean, as described in previous studies. The pattern, however, is not useful as a “fingerprint” of longer-term changes in the MOC: as shown with a companion experiment, a multidecadal, gradual decline in the MOC [of 5 Sv (1 Sv ≡ 106 m3 s−1) over 5 decades] induces a much broader, basin-scale SSH rise over the mid-to-high-latitude NA, with amplitudes of 20 cm. The detectability of such a trend is low along the GS since low-frequency SSH changes are effectively masked here by strong variability on shorter time scales. More favorable signal-to-noise ratios are found in the SPG and the eastern NA, where a MOC trend of 0.1 Sv yr−1 would leave a significant imprint in SSH already after about 20 years.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-01-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-06-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-02-10
    Description: Thermal expansion of seawater is one of the most important contributors to global sea level rise in the past 100 years. Yet, observational estimates of thermal expansion are sparse, mostly limited to the upper ocean layers, and only a part of the available climate model data is sufficiently diagnosed to complete our quantitative understanding of thermosteric sea level rise (thSLR). In order to support usage of results of the Coupled Model Intercomparison Project Phase 5 (CMIP5), complement observations and enable the development of surrogate techniques to project thSLR, we complete diagnostics of CMIP5 models. We obtain 30% more thermal expansion time series than currently published. We find that upper 700 m (2000 m) observational estimates need to be augmented by 36 ± 9% (15 ± 6%) on average to be considered for a global sea level budget. Half of the total expansion originates from depths below 480 ± 250 m – with the range indicating scenario-to-scenario variations. Lastly, to support the development of surrogate methods to project thermal expansion, we calibrate two simplified parameterisations against CMIP5 estimates of thSLR: one parameterisation is suitable for scenarios where only hemispheric ocean temperature profiles are available, the other, where total ocean heat uptake is known (goodness-of-fit: ±5 and ±9%, respectively).
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-02
    Description: Thermal expansion of seawater has been one of the most important contributors to global sea level rise (SLR) over the past 100 years. Yet, observational estimates of this volumetric response of the world's oceans to temperature changes are sparse and mostly limited to the ocean's upper 700 m. Furthermore, only a part of the available climate model data is sufficiently diagnosed to complete our quantitative understanding of thermosteric SLR (thSLR). Here, we extend the available set of thSLR diagnostics from the Coupled Model Intercomparison Project Phase 5 (CMIP5), analyze those model results in order to complement upper-ocean observations and enable the development of surrogate techniques to project thSLR using vertical temperature profile and ocean heat uptake time series. Specifically, based on CMIP5 temperature and salinity data, we provide a compilation of thermal expansion time series that comprise 30 % more simulations than currently published within CMIP5. We find that 21st century thSLR estimates derived solely based on observational estimates from the upper 700 m (2000 m) would have to be multiplied by a factor of 1.39 (1.17) with 90 % uncertainty ranges of 1.24 to 1.58 (1.05 to 1.31) in order to account for thSLR contributions from deeper levels. Half (50 %) of the multi-model total expansion originates from depths below 490 ± 90 m, with the range indicating scenario-to-scenario variations. To support the development of surrogate methods to project thermal expansion, we calibrate two simplified parameterizations against CMIP5 estimates of thSLR: one parameterization is suitable for scenarios where hemispheric ocean temperature profiles are available, the other, where only the total ocean heat uptake is known (goodness of fit: ±5 and ±9 %, respectively).
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-01-01
    Print ISSN: 0967-0645
    Electronic ISSN: 1879-0100
    Topics: Biology , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  [Poster] In: EGU General Assembly 2006, 06.04, Vienna, Austria .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-03-21
    Description: Climate projections1,2,3 and observations over recent decades4,5 indicate that precipitation in subtropical latitudes declines in response to anthropogenic warming, with significant implications for food production and population sustainability. However, this conclusion is derived from emissions scenarios with rapidly increasing radiative forcing to the year 21001,2, which may represent very different conditions from both past and future ‘equilibrium’ warmer climates. Here, we examine multi-century future climate simulations and show that in the Southern Hemisphere subtropical drying ceases soon after global temperature stabilizes. Our results suggest that twenty-first century Southern Hemisphere subtropical drying is not a feature of warm climates per se, but is primarily a response to rapidly rising forcing and global temperatures, as tropical sea-surface temperatures rise more than southern subtropical sea-surface temperatures under transient warming. Subtropical drying may therefore be a temporary response to rapid warming: as greenhouse gas concentrations and global temperatures stabilize, Southern Hemisphere subtropical regions may experience positive precipitation trends.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-21
    Description: Sea level rise (SLR) is one of the major impacts of global warming; it will threaten coastal populations, infrastructure, and ecosystems around the globe in coming centuries. Well-constrained sea level projections are needed to estimate future losses from SLR and benefits of climate protection and adaptation. Process-based models that are designed to resolve the underlying physics of individual sea level drivers form the basis for state-of-the-art sea level projections. However, associated computational costs allow for only a small number of simulations based on selected scenarios that often vary for different sea level components. This approach does not sufficiently support sea level impact science and climate policy analysis, which require a sea level projection methodology that is flexible with regard to the climate scenario yet comprehensive and bound by the physical constraints provided by process-based models. To fill this gap, we present a sea level model that emulates global-mean long-term process-based model projections for all major sea level components. Thermal expansion estimates are calculated with the hemispheric upwelling-diffusion ocean component of the simple carbon-cycle climate model MAGICC, which has been updated and calibrated against CMIP5 ocean temperature profiles and thermal expansion data. Global glacier contributions are estimated based on a parameterization constrained by transient and equilibrium process-based projections. Sea level contribution estimates for Greenland and Antarctic ice sheets are derived from surface mass balance and solid ice discharge parameterizations reproducing current output from ice-sheet models. The land water storage component replicates recent hydrological modeling results. For 2100, we project 0.35 to 0.56 m (66 % range) total SLR based on the RCP2.6 scenario, 0.45 to 0.67 m for RCP4.5, 0.46 to 0.71 m for RCP6.0, and 0.65 to 0.97 m for RCP8.5. These projections lie within the range of the latest IPCC SLR estimates. SLR projections for 2300 yield median responses of 1.02 m for RCP2.6, 1.76 m for RCP4.5, 2.38 m for RCP6.0, and 4.73 m for RCP8.5. The MAGICC sea level model provides a flexible and efficient platform for the analysis of major scenario, model, and climate uncertainties underlying long-term SLR projections. It can be used as a tool to directly investigate the SLR implications of different mitigation pathways and may also serve as input for regional SLR assessments via component-wise sea level pattern scaling.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Geoscientific Model Development
    Publication Date: 2022-03-21
    Description: Thermal expansion of seawater has been one of the most important contributors to global sea level rise (SLR) over the past 100 years. Yet, observational estimates of this volumetric response of the world's oceans to temperature changes are sparse and mostly limited to the ocean's upper 700 m. Furthermore, only a part of the available climate model data is sufficiently diagnosed to complete our quantitative understanding of thermosteric SLR (thSLR). Here, we extend the available set of thSLR diagnostics from the Coupled Model Intercomparison Project Phase 5 (CMIP5), analyze those model results in order to complement upper-ocean observations and enable the development of surrogate techniques to project thSLR using vertical temperature profile and ocean heat uptake time series. Specifically, based on CMIP5 temperature and salinity data, we provide a compilation of thermal expansion time series that comprise 30 % more simulations than currently published within CMIP5. We find that 21st century thSLR estimates derived solely based on observational estimates from the upper 700 m (2000 m) would have to be multiplied by a factor of 1.39 (1.17) with 90 % uncertainty ranges of 1.24 to 1.58 (1.05 to 1.31) in order to account for thSLR contributions from deeper levels. Half (50 %) of the multi-model total expansion originates from depths below 490 ± 90 m, with the range indicating scenario-to-scenario variations. To support the development of surrogate methods to project thermal expansion, we calibrate two simplified parameterizations against CMIP5 estimates of thSLR: one parameterization is suitable for scenarios where hemispheric ocean temperature profiles are available, the other, where only the total ocean heat uptake is known (goodness of fit: ±5 and ±9 %, respectively).
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...