All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    ISSN: 1433-075X
    Keywords: Key words Framework complex zirconium phosphates ; Metastable cubic phase ; Mechanochemical activation ; Hydrothermal synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  High-power ball mill activation of the mixture of hydrated zirconium and lanthanum salts (oxonitrates, oxochlorides) with ammonium phosphate followed by hydrothermal treatment at temperatures not exceeding 200°C and a nearly neutral pH was found to yield crystalline dispersed phase of a cubic NH4Zr2(PO4)3 type along with admixtures of disordered orthorhombic compounds of a zirconium orthophosphate type. In the same conditions and at the same Zr/P ratio, hydrothermal treatment of gels obtained by reacting mixed zirconium and lanthanum nitrates solutions with ammonium phosphates yields no crystalline products, and only treatment in acid media generates a phase of the α-ZrPO4(OH) type coexisting with the NH4Zr2(PO4)3 phase if polyethylene oxide is present. X-ray powder diffraction, transmission electron microscopy, 31MAS-NMR, FTIRS and thermal analysis were applied to elucidate factors affecting crystallization of complex zirconium phosphates in the hydrothermal conditions. The most essential factor appears to be generation of some nuclei of zirconium phosphates under high pressures developed in the course of mixed solids mechanical activation. These nuclei are embedded into matrix of such well-crystallized solid products as ammonium nitrate or chloride. Hence, metastable cubic or orthorhombic structure of the phases obtained via mechanical activation route can be assigned to the nuclei-matrix orientation relationship. Due to easily scaled-up synthesis procedure, these results appear to be very promising for manufacturing of dispersed framework zirconium phosphates as acid catalysts or fast proton conductors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...