ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-10-14
    Description: Water is an essential input to the majority of human activities. Often, access to sufficient water resources is limited by quality and infrastructure aspects, rather than by resource availability alone, and each activity has different requirements regarding the nature of these aspects. This paper develops an integrated approach to assess the adequacy of water resources for the three major water users: the domestic, agricultural and industrial sectors. Additionally, we include environmental water requirements. We first outline the main determinants of water adequacy for each sector. Subsequently, we present an integrated approach using fuzzy logic, which allows assessing sector-specific as well as overall water adequacy. We implement the approach in two case study settings to exemplify the main features of the approach. Using results from two climate models and two forcing RCPs (representative concentration pathways), as well as population projections, we further assess the impacts of climate change in combination with population growth on the adequacy of water resources. The results provide an important step forward in determining the most relevant factors, impeding adequate access to water, which remains an important challenge in many regions of the world. The methodology allows one to directly identify the factors that are most decisive in determining the adequacy of water in each region, pointing towards the most efficient intervention points to improve conditions. Our findings underline the fact that, in addition to water volumes, water quality is a limitation for all sectors and, especially for the environmental sector, high levels of pollution are a threat to water adequacy.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-10-22
    Description: Climate change will have adverse impacts on many different sectors of society, with manifold consequences for human livelihoods and well-being. However, a systematic method to quantify human well-being and livelihoods across sectors is so far unavailable, making it difficult to determine the extent of such impacts. Climate impact analyses are often limited to individual sectors (e.g. food or water) and employ sector-specific target measures, while systematic linkages to general livelihood conditions remain unexplored. Further, recent multi-model assessments have shown that uncertainties in projections of climate impacts deriving from climate and impact models, as well as greenhouse gas scenarios, are substantial, posing an additional challenge in linking climate impacts with livelihood conditions. This article first presents a methodology to consistently measure what is referred to here as AHEAD (Adequate Human livelihood conditions for wEll-being And Development). Based on a trans-disciplinary sample of concepts addressing human well-being and livelihoods, the approach measures the adequacy of conditions of 16 elements. We implement the method at global scale, using results from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) to show how changes in water availability affect the fulfilment of AHEAD at national resolution. In addition, AHEAD allows for the uncertainty of climate and impact model projections to be identified and differentiated. We show how the approach can help to put the substantial inter-model spread into the context of country-specific livelihood conditions by differentiating where the uncertainty about water scarcity is relevant with regard to livelihood conditions – and where it is not. The results indicate that livelihood conditions are compromised by water scarcity in 34 countries. However, more often, AHEAD fulfilment is limited through other elements. The analysis shows that the water-specific uncertainty ranges of the model output are outside relevant thresholds for AHEAD for 65 out of 111 countries, and therefore do not contribute to the overall uncertainty about climate change impacts on livelihoods. In 46 of the countries in the analysis, water-specific uncertainty is relevant to AHEAD. The AHEAD method presented here, together with first results, forms an important step towards making scientific results more applicable for policy decisions.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-31
    Description: Climate change will have adverse impacts on many different sectors of society, with manifold consequences for human livelihoods and well-being. However, a systematic method to quantify human well-being and livelihoods across sectors is so far unavailable, making it difficult to determine the extent of such impacts. Climate impact analyses are often limited to individual sectors (e.g. food or water) and employ sector-specific target-measures, while systematic linkages to general livelihood conditions remain unexplored. Further, recent multi-model assessments have shown that uncertainties in projections of climate impacts deriving from climate and impact models as well as greenhouse gas scenarios are substantial, posing an additional challenge in linking climate impacts with livelihood conditions. This article first presents a methodology to consistently measure Adequate Human livelihood conditions for wEll-being And Development (AHEAD). Based on a transdisciplinary sample of influential concepts addressing human well-being, the approach measures the adequacy of conditions of 16 elements. We implement the method at global scale, using results from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) to show how changes in water availability affect the fulfilment of AHEAD at national resolution. In addition, AHEAD allows identifying and differentiating uncertainty of climate and impact model projections. We show how the approach can help to put the substantial inter-model spread into the context of country-specific livelihood conditions by differentiating where the uncertainty about water scarcity is relevant with regard to livelihood conditions – and where it is not. The results indicate that in many countries today, livelihood conditions are compromised by water scarcity. However, more often, AHEAD fulfilment is limited through other elements. Moreover, the analysis shows that for 44 out of 111 countries, the water-specific uncertainty ranges are outside relevant thresholds for AHEAD, and therefore do not contribute to the overall uncertainty about climate change impacts on livelihoods. The AHEAD method presented here, together with first results, forms an important step towards making scientific results more applicable for policy-decisions.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-27
    Description: Robust appraisals of climate impacts at different levels of global-mean temperature increase are vital to guide assessments of dangerous anthropogenic interference with the climate system. Currently, two such levels are discussed in the context of the international climate negotiations as long-term global temperature goals: a below 2 °C and a 1.5 °C limit in global-mean temperature rise above pre-industrial levels. Despite the prominence of these two temperature limits, a comprehensive assessment of the differences in climate impacts at these levels is still missing. Here we provide an assessment of key impacts of climate change at warming levels of 1.5 °C and 2 °C, including extreme weather events, water availability, agricultural yields, sea-level rise and risk of coral reef loss. Our results reveal substantial differences in impacts between 1.5 °C and 2 °C. For heat-related extremes, the additional 0.5 °C increase in global-mean temperature marks the difference between events at the upper limit of present-day natural variability and a new climate regime, particularly in tropical regions. Similarly, this warming difference is likely to be decisive for the future of tropical coral reefs. In a scenario with an end-of-century warming of 2 °C, virtually all tropical coral reefs are projected to be at risk of severe degradation due to temperature induced bleaching from 2050 onwards. This fraction is reduced to about 90 % in 2050 and projected to decline to 70 % by 2100 for a 1.5 °C scenario. Analyses of precipitation-related impacts reveal distinct regional differences and several hot-spots of change emerge. Regional reduction in median water availability for the Mediterranean is found to nearly double from 9 to 17 % between 1.5 °C and 2 °C, and the projected lengthening of regional dry spells increases from 7 % longer to 11 %. Projections for agricultural yields differ between crop types as well as world regions. While some (in particular high-latitude) regions may benefit, tropical regions like West Africa, South-East Asia, as well as Central and Northern South America are projected to face local yield reductions, particularly for wheat and maize. Best estimate sea-level rise projections based on two illustrative scenarios indicate a 50 cm rise by 2100 relative to year 2000-levels under a 2 °C warming, which is about 10 cm lower for a 1.5 °C scenario. Our findings highlight the importance of regional differentiation to assess future climate risks as well as different vulnerabilities to incremental increases in global-mean temperature. The article provides a consistent and comprehensive assessment of existing projections and a solid foundation for future work on refining our understanding of warming-level dependent climate impacts.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-05-12
    Description: Water is an essential input to the majority of human activities. Often, access to sufficient water resources is limited by quality and infrastructure aspects, rather than by resource availability alone, and each activity has different requirements regarding the nature of these aspects. This paper develops an integrated approach to assess the adequacy of water resources for the three major water users, the domestic, agricultural and industrial sectors. Additionally, we include environmental water requirements. We first outline the main determinants of water adequacy for each sector. Subsequently, we present an integrated approach using fuzzy logic, with allows assessing sector-specific as well as overall water adequacy. We implement the approach in two case study settings to exemplify the main features of the approach. Using results from two climate models and two forcing RCPs (Representative Concentration Pathways) as well as population projections, we further assess the impacts of climate change and population growth on the adequacy of water resources. The results provide an important step forward in determining the most relevant factors, impeding adequate access to water, which remains an important challenge in many regions of the world. The methodology allows to directly identify those factors most decisive in determining the adequacy of water in each region, pointing towards the most efficient intervention points to improve conditions. Our findings underline the fact that in addition to water volumes, water quality is a limitation for all sectors and especially for the environmental sector, high levels of pollution are a threat to water adequacy.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-11-18
    Description: Assessing global progress on human adaptation to climate change is an urgent priority. Although the literature on adaptation to climate change is rapidly expanding, little is known about the actual extent of implementation. We systematically screened 〉48,000 articles using machine learning methods and a global network of 126 researchers. Our synthesis of the resulting 1,682 articles presents a systematic and comprehensive global stocktake of implemented human adaptation to climate change. Documented adaptations were largely fragmented, local and incremental, with limited evidence of transformational adaptation and negligible evidence of risk reduction outcomes. We identify eight priorities for global adaptation research: assess the effectiveness of adaptation responses, enhance the understanding of limits to adaptation, enable individuals and civil society to adapt, include missing places, scholars and scholarship, understand private sector responses, improve methods for synthesizing different forms of evidence, assess the adaptation at different temperature thresholds, and improve the inclusion of timescale and the dynamics of responses.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  A review of user interface conventions in web applications for climate change information
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Potsdam-Institut für Klimafolgenforschung
    In:  Klimawandel in Nordrhein-Westfalen. Regionale Abschätzung der Anfälligkeit ausgewählter Sektoren. Abschlussbericht
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    ESPON
    In:  Case Study North Rhine-Westphalia (NRW) | Climate Change and Territorial Effects on Regions and Local Economies ; Annex 3
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...