ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2015-03-20
    Description: We analyse a sample of multiple-exoplanet systems which contain at least three transiting planets detected by the Kepler mission (‘ Kepler multiples’). We use a generalized Titius–Bode relation to predict the periods of 228 additional planets in 151 of these Kepler multiples. These Titius–Bode-based predictions suggest that there are, on average, 2 ± 1 planets in the habitable zone of each star. We estimate the inclination of the invariable plane for each system and prioritize our planet predictions by their geometric probability to transit. We highlight a short list of 77 predicted planets in 40 systems with a high geometric probability to transit, resulting in an expected detection rate of ~15 per cent, ~3 times higher than the detection rate of our previous Titius–Bode-based predictions.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-26
    Description: We evaluate the extent to which newly detected exoplanetary systems containing at least four planets adhere to a generalized Titius–Bode (TB) relation. We find that the majority of exoplanet systems in our sample adhere to the TB relation to a greater extent than the Solar system does, particularly those detected by the Kepler mission. We use a generalized TB relation to make a list of predictions for the existence of 141 additional exoplanets in 68 multiple-exoplanet systems: 73 candidates from interpolation, 68 candidates from extrapolation. We predict the existence of a low-radius ( R 〈 2.5R ) exoplanet within the habitable zone of KOI-812 and that the average number of planets in the habitable zone of a star is 1–2. The usefulness of the TB relation and its validation as a tool for predicting planets will be partially tested by upcoming Kepler data releases.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Cosmic anisotrophy produces an excess variance sq sigma(sub sky) in the Delta maps produced by the Differential Microwave Radiometer (DMR) on cosmic background explorer (COBE) that is over and above the instrument noise. After smoothing to an effective resolution of 10 deg, this excess sigma(sub sky)(10 deg), provides an estimate for the amplitude of the primordial density perturbation power spectrum with a cosmic uncertainty of only 12%. We employ detailed Monte Carlo techniques to express the amplitude derived from this statistic in terms of the universal root mean square (rms) quadrupole amplitude, (Q sq/RMS)(exp 0.5). The effects of monopole and dipole subtraction and the non-Gaussian shape of the DMR beam cause the derived (Q sq/RMS)(exp 0.5) to be 5%-10% larger than would be derived using simplified analytic approximations. We also investigate the properties of two other map statistics: the actual quadrupole and the Boughn-Cottingham statistic. Both the sigma(sub sky)(10 deg) statistic and the Boughn-Cottingham statistic are consistent with the (Q sq/RMS)(exp 0.5) = 17 +/- 5 micro K reported by Smoot et al. (1992) and Wright et al. (1992).
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 420; 1; p. 1-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: We compute the three-point temperature correlation function of the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) first-year sky maps to search for non-Gaussian temperature fluctuations. The level of fluctuations seen in the computed correlation function are too large to be attributable solely to instrument noise. However the fluctuations are consistent with the level expected to result from a superposition of istrument noise and sky signal arising from a Gaussian power-law model of initial fluctuations, with a quadrupole normalized amplitude of 17 micro K and a power-law spectral index n = 1. We place limits on the amplitude of intrinsic three-point correlations with a variety of predicted functional forms.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 431; 1; p. 1-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-01-25
    Description: Six Differential Microwave Radiometers (DMR) on COBE (Cosmic Background Explorer) measure the large-angular-scale isotropy of the cosmic microwave background (CMB) at 31.5, 53, and 90 GHz. Quality assurance software analyzes the daily telemetry from the spacecraft to ensure that the instrument is operating correctly and that the data are not corrupted. Quality assurance for DMR poses challenging requirements. The data are differential, so a single bad point can affect a large region of the sky, yet the CMB isotropy requires lengthy integration times (greater than 1 year) to limit potential CMB anisotropies. Celestial sources (with the exception of the moon) are not, in general, visible in the raw differential data. A 'quicklook' software system was developed that, in addition to basic plotting and limit-checking, implements a collection of data tests as well as long-term trending. Some of the key capabilities include the following: (1) stability analysis showing how well the data RMS averages down with increased data; (2) a Fourier analysis and autocorrelation routine to plot the power spectrum and confirm the presence of the 3 mK 'cosmic' dipole signal; (3) binning of the data against basic spacecraft quantities such as orbit angle; (4) long-term trending; and (5) dipole fits to confirm the spacecraft attitude azimuth angle.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: NASA. Goddard Space Flight Center, Goddard Visiting Scientist Program for the Space and Earth Sciences Directorate; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-01-25
    Description: The purpose of the Differential Microwave Radiometer (DMR) experiment on the Cosmic Background Explorer (COBE) satellite is to make whole-sky maps, at frequencies of 31.5, 53, and 90 GHz, of any departures of the Cosmic Microwave Background (CMB) from its mean value of 2.735 K. An elaborate software system is necessary to calibrate and invert the differential measurements, so as to make sky maps free from large scale systematic errors to levels less than a millionth of the CMB.
    Keywords: ASTRONOMY
    Type: Goddard Visiting Scientist Program for the Space and Earth Sciences Directorate; 1 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-27
    Description: The frequency-independent rms temperature fluctuations determined from the Cosmic Background Explorer-Differential Microwave Radiometer (COBE-DMR) two-year sky maps are used to infer the parameter Q(sub rms-PS), which characterizes the normalization of power-law models of primordial cosmological temperature anisotropy, for a forced fit to a scale-invariant Harrison-Zel'dovich (n = 1) spectral model. Using a joint analysis of the 7 deg and 10 deg 'cross'-rms derived from both the 53 and 90 GHz sky maps, we find Q(sub rms-PS) = 17.0(sub -2.1 sup +2.5) micro Kelvin when the low quadrupole is included, and Q(sub rms-PS) = 19.4(sub -2.1 sup +2.3) micro Kelvin excluding the quadrupole. These results are consistent with the n = 1 fits from more sensitive methods. The effect of the low quadrupole derived from the COBE-DMR data on the inferred Q(sub rms-PS) normalization is investigated. A bias to lower Q(sub rms-PS) is found when the quadrupole is included. The higher normalization for a forced n = 1 fit is then favored by the cross-rms technique.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 436; 2; p. L99-L102
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-28
    Description: The Cosmic Background Explorer Satellite Differential Radiometer (COBE DMR) sky maps contain low-level correlated noise. We obtain estimates of the amplitude and pattern of the correlated noise from three techniques: angular averages of the covariance matrix, Monte Carlo simulations of two-point correlation functions and direct analysis of the DMR maps. The results from the three methods are mutually consistent. The noise covariance matrix of a DMR sky maps is diagonal to an accuracy of better than 1%. For a given sky pixel, the dominant noise covariance occure with the ring of pixels at an angular separation of 60 deg due to the 60 deg separation of the DMR horns. The mean covariance at 60 deg is 0.45%((sup +0.18)(sub -0.14)) of the mean variance. Additionally, the variance in a given pixel is 0.7% greater than would be expected from a single beam experiment with the same noise properties. Autocorrelation functions suffer from a approximately 1.5 sigma positive bias at 60 deg while cross-correlations have no bias. Published COBE DMR results are not significantly affected by correlated noise.
    Keywords: ASTRONOMY
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 436; 2; p. 452-455
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-27
    Description: The large-scale cosmic background anisotropy detected by the COBE Differential Microwave Radiometer (DMR) instrument is compared to the sensitive previous measurements on various angular scales, and to the predictions of a wide variety of models of structure formation driven by gravitational instability. The observed anisotropy is consistent with all previously measured upper limits and with a number of dynamical models of structure formation. For example, the data agree with an unbiased cold dark matter (CDM) model with H0 = 50 km/s Mpc and Delta-M/M = 1 in a 16 Mpc radius sphere. Other models, such as CDM plus massive neutrinos (hot dark matter (HDM)), or CDM with a nonzero cosmological constant are also consistent with the COBE detection and can provide the extra power seen on 5-10,000 km/s scales.
    Keywords: SPACE RADIATION
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 396; 1, Se; L13-L18
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...