ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: This paper presents the results of the modal survey test of the Lidar In-space Technology Experiment (LITE), a Space Shuttle payload mounted in a Spacelab flight single pallet. The test was performed by the Dynamics Test Branch at Marshall Space Flight Center, AL and run in two phases. In the first phase, an unloaded orthogrid connected to the pallet with 52 tension struts was tested. This test included 73 measurement points in three directions. In the second phase, the pallet was integrated with mass simulators mounted on the flight support structure to represent the dynamics (weight and center of gravity) of the various components comprising the LITE experiment and instrumented at 213 points in 3 directions. The test article was suspended by an air bag system to simulate a free-free boundary condition. This paper presents the results obtained from the testing and analytical model correlation efforts. The effect of the suspension system on the test article is also discussed.
    Keywords: LAUNCH VEHICLES AND SPACE VEHICLES
    Type: In: International Modal Analysis Conference, 10th, San Diego, CA, Feb. 3-7, 1992, Proceedings. Vol. 1 (A94-12476 02-39); p. 124-129.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: NASAs Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology was selected for a Technology Demonstration Mission under the Space Technology Mission Directorate in 2017. HIAD is an enabling technology that can facilitate atmospheric entry of heavy payloads to planets such as Earth and Mars using a deployable aeroshell. The deployable nature of the HIAD technology allows it to avoid the size constraints imposed on current rigid aeroshell entry systems. This enables use of larger aeroshells resulting in increased entry system performance (e.g. higher pay-load mass and/or volume, higher landing altitude at Mars). The Low Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) is currently scheduled for late-2021. LOFTID will be launched out of Vandenberg Air Force Base as a secondary payload on an Atlas V rocket. The flight test features a 6m diameter, 70-deg sphere-cone aeroshell and will provide invaluable high-energy orbital re-entry flight data. This data will be essential in supporting the HIAD team to mature the technology to diameters of 10m and greater. Aeroshells of this scale are applicable to potential near-term commercial applications and future NASA missions. Currently the LOFTID project has completed fabrication of the engineering design unit (EDU) inflatable structure (IS) and the flexible thermal protection system (F-TPS). These two components along with the rigid nose and center body comprise the HIAD aeroshell system. This EDU aeroshell is the precursor to the LOFTID aeroshell that will be used for flight. The EDU was built to verify the design given the subtle differences between the LOFTID aeroshell and past aeroshell designs that have been fabricated under the NASA HIAD project. To characterize the structural performance of the LOFTID aeroshell design, three structural tests will be performed. The first test to be conducted is static load testing, which will induce a uniform load across the forward surface of the aeroshell to simulate the expected pressure forces during atmospheric entry. The IS integrated with the rigid center body will first be tested alone to provide data for analytical model correlation, and then the F-TPS will be integrated for a second series of static load testing of the full aeroshell system. Instrumentation will be employed during the test series to measure component loads during testing, and a laser scanner will be used to generate a 3D map of the aeroshell surface to verify that the shape of the structure is acceptable at the simulated flight loads. After static load testing, pack and deployment testing will be conducted multiple times on the integrated system to demonstrate the aeroshells ability to fit within the required packed volume for the LOFTID mission without experiencing significant damage. Finally, the aeroshell will undergo modal testing to characterize its structural response. This presentation will discuss the setup and execution of each of the three tests that the EDU aeroshell will undergo. In addition, initial results of the testing will be presented outlining key findings as LOFTID moves for-ward with fabrication of the flight aeroshell.
    Keywords: Aircraft Design, Testing and Performance
    Type: ARC-E-DAA-TN66439 , International Planetary Probe Workshop; Jul 08, 2019 - Jul 12, 2019; Oxford; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...