ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Keywords: Infrastructure (Economics), Congresses. ; Intelligent Vehicle Highway Systems, Congresses. ; Public investments, Congresses. ; Transportation, Finance, Congresses.
    Pages: 372 p.
    ISBN: 1-402-07874-9
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Wilmette : Applied Publishing Ltd.
    Call number: M 93.0018 ; M 93.0018
    Type of Medium: Monograph available for loan
    Pages: X, 287 S. : Ill.
    ISBN: 0915834030
    Uniform Title: Geochimiceskie methody poiskov ...
    Language: English
    Location: Upper compact magazine
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1420-9071
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary A pheromone-producing gland was discovered in the second abdominal segment of virgin female tobacco beetles,Lasioderma serricorne (Fabricius). The gland duct extends to an orifice below the genital pore and is supported by a rigid invagination of the integument. Hexane extracts of intact pheromone glands were found attractive to male tobacco beetles and also induced high receptor potentials in the olfactory sensilla of the antennae of maleL. serricorne. A surface extract of virgin females proved to be significantly more attractive than an extract of pheromone glands.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1420-9071
    Keywords: Flour mite ; Acarus siro ; requirements for folic acid ; riboflavin ; thiamine ; niacin ; pyridoxine ; biotin ; sterol ; dietary antagonists ; acaristasis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The flour miteAcarus siro L. (Acaridae, Astigmata) was reared on an axenic diet with the addition of various nutrient antagonists, with and without supplementation by the corresponding nutrients. The deficiency symptoms induced by dietary antagonists, and the reversibility of the former by nutrient administration, indicated that folic acid, riboflavin, thiamine, niacin, pyridoxine, biotin and a sterol are essential for the growth and reproduction of the flour mite. It was also demonstrated that the population density and generation sequence of this species can be suppressed to the level of acaristasis by nutrient antagonists, owing to inhibited nutrient utilization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1612-4766
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Several polyphagous coleopteran and lepidopterous species, presently known as “storage insects”, have presumably evolved from free-living ancestral species, being capable of growth and reproduction on stored, desiccated and often nutritionally deficient foodstuffs. These potentially harmful insect species have probably adapted themselves to the newly acquired storage biotope by means of a well-developed sensory equipment serving food acquisition, aggregation and mate finding. Information by molecules may be communicated among the individuals of an insect species by means of relatively volatile pheromones (Greek, pherō=convey) being emitted by exocrine glands and mainly carried by moving air to the sensilla of responsive individuals, or among the internal organs of an insect by means of relativelynonvolatile hormones (Greek, hormaō=impel), secreted fromendocrine glands and transported by the haemolymph to the receptors of target organs. It was postulated that pheromones were among the first chemical messengers utilized during evolution of animal behaviour, and that the pheromones of primitive protozoans could have been precursors of the hormones of metazoans. Hormones of the neurosecretory cells and corpora allata were found to induce sex pheromone biosynthesis in femaleTenebrio molitor, while dietary intake of a juvenile hormone analogue was shown to significantly enhance the production of aggregation pheromones in the males of certain silvanid and cucujid species. Aggregation pheromones are usually produced by the longlived and feeding males of several coleopteran species (Table 2) which deposit those chemical messengers to the substrate, where they induce the formation of bisexual assemblies supporting feeding, mating and reproduction. Sex pheromones are mostly produced by the short-lived and non-feeding females of several coleopteran and lepidopterous species (Table 2); females of those species usually release their sex pheromones to the air space during calling, and thus attract conspecific males for mating (Fig. 5 a–c). In some dermestid species, pheromone emission differs from the above scheme. Females of the short-lived and non-feedingTrogoderma granarium andT. inclusum release a phromone acting as a sex attractant for conspecific males and—in synergistic combination with tactile stimuli—as an assembling scent for conspecific females (Figs. 1 a, b, 2 and Table 1), females of the short-lived and feedingAntbrenus verbasci, Attagenus megatoma andAtt. elongatulus produce a sex pheromone for conspecific males, while females of the long-lived and feedingAn. scrophulariae emit a sex pheromone which lures conspecific males. Males of the long-lived and non-feeding bruchid speciesAcanthoscelides obtectus release a sex pheromone which attracts conspecific females. Androconial pheromones are discharged during courtship from the alar scales and abdominal tufts found in males of several microlepidopteran species (Phycitidae) includingAnagasta kuebniella, Cadra cautella, Ephestia elutella andPlodia interpunctella (Fig. 6 b–c); those aphrodisiac pheromones are known to enhance the specific responsiveness of the females to their mates. Electrophysiological recordings revealed that aggregation pheromones elicit considerable receptor potentials in the antennal olfactory sensilla of both sexes, whereas sex pheromones induce high receptor potentials in the antennal olfactory sensilla of one sex only. It was assumed that aggregation pheromones may be the evolutionary precursors of sex pheromones. Pheromone-producingexocrine glands are essentially groups of modified epidermals cells which are found in different body regions of male and/or female storage insect species. A simple pheromone gland, consisting of a single layer of adjacent secretory cells beneath the endocuticle of the 5th visible abdominal sternite, occurs in femaleTrogoderma granarium (Fig. 3 a). A more complex design, comprising an intra-abdominal semiglobular pheromone gland with numerous secretory cells being connected to tubuli which lead to an invaginated cuticular cribellum, is available in maleDermestes maculatus (Figs. 3 c, d and 4 c). The cribellum, provided with a caudally curved brush of fluted brisles, occurs in the centre of the 4th visible abdominal sternite (Figs. 4 a, b and 7 b). An apodemous exocrine gland is found in the lumen of the second abdominal segment of femaleLasioderma serricorne (Fig. 3 b). This lobate gland comprises many secretory cells, being connected by numerous tubuli to a sheath-like conical duct enveloping a V-shaped skeletal apodeme, which terminates in the abdominal tip. In maleTribolium castaneum, the secretory cells of both pheromone glands are connected by tubuli to two cribella, being densely covered by fluted bristles, and found in the femora of both forelegs (Fig. 7 a). Females of the phycitid speciesAnagasta kuebniella, Cadra cautella, Ephestia elutella andPlodia interpunctella are equipped with an intersegmental pheromone gland, situated between the 8th and 9th abdominal segment near the genital opening. The exocrine gland of the four moth species consists of a single layer of columnar secretory cells, lined by a spongy cuticle which seems to be permeable to the sex pheromone (Fig. 6 a). The latter is disseminated by calling females (Fig. 5 a, b) while their exocrine glands are widely exposed. Males of the above phycitid species are furnished with alar and abdominal androconia which become exposed during courtship and discharge aphrodisiac pheromones. The base of each of the androconial bristles and scales is immersed to an underlying unicellular, pheromone-producing gland (Fig. 6 d, e). The aphrodisiac pheromones, being secreted by the above glandular cells, are passing the lumen and walls of the bristles and scales, and evaporate from the surface of the latter. For example, malePlodia interpunctella possess 2 pairs of scent tufts (a small and a large one) on both sides of the 8th abdominal tergiet as well as 2 pairs of scent tufts (a small and a large one) near the base of the costal margin of the forewings (Fig. 6 b, c). Females of several phycitid species respond to the aphrodisiac pheromone of conspecific males by a pronounced readiness to mate. In the course of time, about 3 dozens of insect species (⊃3/4 coleopteran and ⊃ 1/4 lepidopterous species) have undergone sympatric speciation by sharing desiccated food in stores as a common habitat. Fertile matings between such heterogeneous species are often prevented by morphological and anatomical incompatibilities as well as physiological and behavioural barriers. Most of the species living in the storage habitat are reproductively isolated due to the molecular structure and blend composition of their pheromones (Table 2). Interestingly, some species (listed below) deviate from the majority by sharing the structure of their main pheromone components (mentioned in parenthesis), and are thus poorly separated: the curculionidsSitophilus oryzae andS. zeamais ((4S,5R)-5-hydroxy-4-methyl-3-heptanone), the tenebrionidsTribolium castaneum andT. confusum ((4R,8R)-dimethyldecanal) as well as the dermestidsTrogoderma inclusum andT. variabile ((R,Z)-14-methyl-8-hexadecenal). Theinsufficient reproductive isolation of the above species is compensated, i.a., by additional availability of a sex pheromone in femaleTribolium confusum, by different calling periods and emission rates of (R,Z)-14-methyl-8-hexadecenal in females of the forementionedTrogodema species.Trogoderma glabrum andT. granarium areincompletely isolated by sharing (R,E)-14-methyl-8-hexadecenal as a pheromone component; they are indeed capable of cross-mating, but produce sterile hybrids. Moreover, maleOryzaepbilus mercator andO. surinamensis incorporate (Z,Z)-3,6-dodecadien-11R-olide as a common chiral component to their aggregation pheromones. The females of 5 phycitid species share (Z,E)-9,12-tetradecadien-1-yl acetate as their main pheromone
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1612-4766
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Description / Table of Contents: Zusammenfassung Mehlmilben (Acarus siro) leben in Gemeinschaft mit Schlauchpilzen der GattungenAcremonium, Aspergillus, Penicillium und Saccharomyces an Nahrungsvorräten zu wechselseitigem Vorteil (Biocoenose), wobei die Mehlmilben wasserunlösliches Guanin (2-Amino-6-hydroxypurin) ausscheiden und die genannten Pilzarten gasförmiges Ammoniak abgeben. Die Verwendung beider terminalen Stickstoffmetabolite als Botenstoffe dürfte in einem relativ frühen Stadium der Phylogenese stattgefunden haben: Bei Mehlmilben übernahm Ammoniak die Rolle eines anlockenden Kairomons und Guanin die Aufgabe eines aggregationsfördernden sowie strukturspezifischen Pheromons. Im Endeffekt tragen die genannten Schlauchpilze zum Populationsaufbau noch ungepaarter Mehlmilben bei, während diese für Verbreitung der Schlauchpilze an gespeicherten Nahrungsmitteln sorgen.
    Notes: Abstract Populations of the flour miteAcarus siro L. (Acaridae, Astigmata) usually occur in biocoenotic association with a fungal microflora comprising mainlyAcremonium strictum, Aspergillus candidus, Penicillium chrysogenum andSaccharomyces cerevesiae on stored cereals at high relative humidities. The flour mites excrete their nitrogenous waste mainly as guanine, while the fungi produce ammonia as one of their terminal metabolites. Both end-products of nitrogen metabolism must have acquired, early in the course of evolution, the rôle of intra- and interspecific signals: guanine (2-amino-6-hydroxypurine) functions as an assembly pheromone, while ammonia acts as a kairomone being attractive to both sexes of flour mites, particularly before mating. Both chemical signals communicate to flour mites the availability of a nutritious diet and the presence of conspecifics, whereby aggregation, mate finding and reproduction of this species are ensured.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1612-4766
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Description / Table of Contents: Zusammenfassung Mißernten und Hungersnöte infolge ausbleibender sowie ungenügender oder übermäßiger Nilüberschwemmungen dürften der wichtigste Anlaß für die mengenmäßige und langfristige Speicherung von geworfeltem Getreide, hpts. Emmer (b d t, b t j) und Gerste (i t), während des Alten Reiches (∼2575–2134 v. Chr.) gewesen sein. Die Bauart der Kornspeicher (von ∼5000 v. Chr. bis 395 n. Chr.) und die darin gelagerten Getreidearten lassen sich anhand von Modellen, Reliefdenkmälern, Gemälden (die in verschiedenen Grabstätten gefunden wurden) und Ruinen übergroßer Kornspeicher (Abb. 1–4a, b) sowie aufgrund der hieroglyphischen Worte für Getreidegott, Getreide und Kornspeicher (Abb. 5) nachweisen. Seit Beginn der II. Dynastie (∼2770–2649 v. Chr.) wurden beträchtliche Lebensmittelmengen in den unterirdischen Vorratskammern der Mastabagräber gelagert, um die Verstorbenen mit den, für ihr zukünftiges „Jenseitsleben” unentbehrlichen, Grabbeigaben (pert er kheru) zu versorgen. Seit Anfang der IV. Dyn. (∼2575–2465 v. Chr.) wurden verstorbene Menschen sowie geheiligte Tiere mumifiziert (nach operativer Entfernung des Gehirns und der Eingeweide sowie Entwässerung und Balsamierung), um die Unversehrtheit ihrer Körper für das Leben im Jenseits zu sichern. Der Besitz ihres unbeschädigten Körpers, ihres Namens im Diesseits sowie reichlich eßbare und trinkbare Grabbeigaben waren die Voraussetzungen für ein verklärtes Jenseitsleben ihres k a, d. i. der unvergängliche, geistig-seelische Teil des Verstorbenen, den der mumifizierte Körper beherbergte. Das 36. Kapitel des ägyptischen Totenbuches (Thebanische Rezension, XVIII.–XXII. Dyn.) enthält einen göttlichen Spruch, der an grabschändende Insektenarten namens apshait gerichtet ist. Dieses Kapitel und die dazu gehörende Abbildung warnen die apshait-Insekten nachdrücklich, sich weder dem Verstorbenen noch seinen Grabbeigaben zu nähern (Abb. 6). Ungeachtet der Tatsache, daß die Mumien (k h a't) mittels physischer Barriéren und apotropäischer Maßnahmen (Abb. 6) vor in die Gräber eindringenden Tieren geschützt waren, wurden die Toten und deren Nahrungsbeigaben öfters von aas- und getreidefressenden Insektenarten heimgesucht (Abb. 7, 8a, b und 10). So konnten mehrere Arten von Speckkäfern (Dermestidae) und Buntkäfern (Cleridae) an die, in den Mumien verbliebenen, Fleisch- und Fettgewebe gelangen und diese verzehren. Die SpeckkäferartenDermestes frischii, D. maculatus undD. roei, der blaue SchinkenkäferNecrobia violacea sowie der rotbeinige SchinkenkäferN. rufipes wurden in Schädeln thebanischer Mumien der Ptolemäerzeit (∼304–30 v. Chr.) entdeckt (Abb. 7). Die in Theben begrabene Mumie König Ramses II. (∼1290–1224 v. Chr.) war ebenfalls vonD. frischii undN. rufipes befallen. Mumifizierte Ibisse (Threskiornis aethiopica), die aus der Griechisch-Römischen Epoche (∼332 v. Chr.-395 n. Chr.) stammten, waren von Larven der GattungenAnthrenus undDermestes erheblich zerfressen. Bekanntlicherweise werden aasfressende Cleridae und Dermestidae von einigen Zersetzungsprodukten ranziger Fettgewebe (vorwiegend Fettsäuren) angelockt, während manche cyclorrhaphe Fliegenarten mit Hilfe bestimmter Eiweißabbauprodukte wie Ammoniak, Kohlendioxyd, Schwefelwasserstoff sowie Cadaverin und Putrescin zum Fraß an menschlichen oder tierischen Kadavern angeregt werden. An den Nahrungsmitteln, die den Verstorbenen in ihre Grabstätten mitgegeben wurden, fand man Speichermotten der GattungEphestia oderPlodia in einem prädynastischen ∼5000 Jahre alten Grab, KornkäferSitophilus granarius (Abb. 10) in Gräbern der III. Dyn. (∼2649–2575 v. Chr.) und der VI. Dyn. (∼2323–2150 v. Chr.), ReismehlkäferTribolium castaneum oderT. confusum in einem Grab der VI. Dyn. sowie BuckelkäferGibbium psylloides oderG. aequinoctiale, TabakkäferLasioderma serricorne, BrotkäferStegobium paniceum (Abb. 8a, b) sowie die SchlupfwespeBracon hebetor in Gräbern der XVIII. Dyn. (∼1550–1307 v. Chr.). Die an den Überresten solcher Grabbeigaben gefundenen Insektenarten spiegeln natürlich deren Vorkommen in altägyptischen Getreidelagern bzw. anderen Nahrungsmittelspeichern wider. Vorrats- und mumienschädliche Grabinsekten dürften eines der frühesten, geschichtlich nachweisbaren Bindeglieder zwischen Insekten und Menschen gewesen sein. Da Ägypten im Altertum beträchtliche, teils mit Insekten befallene, Getreidemengen an andere Mittelmeerländer lieferte (hauptsächlich nach Rom, zwischen 30 v. Chr. und 395 n. Chr.), wurden mehrere vorratsschädliche Insektenarten in südeuropäischen Speichern verbreitet. Insektenarten, die gegenwärtig in Nahrungsmittelspeichern leben, gleichen den in antiken Gräbern und Speichern entdeckten Insektenarten aufgrund ihrer Fähigkeit zu Wachstum und Fortpflanzung an verschiedenen getrockneten Nahrungsmitteln, deren Nährstoffgehalt oft unvollständig ist. Seit dem Alten Reich wurden in Ägypten beträchtliche Mengen getrockneter Samen, Früchte und anderer Lebensmittel in geräumigen Vorratslagern gespeichert. Dadurch erhielten 2–3 Dutzend Insektenarten, deren Fortbestand mittels verschiedener, im Freiland verstreut vorkommender, Nahrungsquellen (woran sie auch gegenwärtig noch vorkommen) gewährleistet war, eine bequeme Ernährungsmöglichkeit an gehäuften und vor Wettereinfluß geschützten Lebensmitteln. Die Errichtung zahlreich verbreiteter Vorratslager führte daher schon frühzeitig zu einer Störung des natürlichen Gleichgewichts zwischen Menschen und Insekten. Die unterschiedliche Lebensweise mancher synanthroper Pyralidenarten lassen einen allmählichen Übergang ihrer Ernährung an halbtrockenen Früchten, die noch an den Bäumen hängen, zum Fraß vollständig getrockneter Früchte und anderer Pflanzenteile, die in Vorratslagern aufbewahrt sind, erkennen.Ephestia vitivora bspw. lebt vorwiegend an halbtrockenen Früchten, die entweder noch an den Ästen hängen oder schon zu Boden gefallen sind, wogegenE. cautella, E. elutella undPlodia interpunctella in Speichern gelagertes Dörrobst sowie getrocknete Samen und andere Pflanzenteile als Nahrung bevorzugen. Die optomotorische Anlockung vonE. cautella undP. interpunctella an senkrecht hängende, rechteckige Silhouetten beruht höchstwahrscheinlich auf Signalreizen, die von den Stämmen Früchte tragender Bäume ausgelöst werden. Die Verhaltensweise der genannten Phycitinae-Arten dürfte aus der Zeit stammen, zu der diese ihre Eier noch an überreife, geschrumpfte und an Ästen hängende Früchte bzw. Fallobst legten, um daran ihre Larven zu ernähren. Eine stufenweise Anpassung vom Freilandhabitat an Getreidespeicher ist auch bei einigen Rüsselkäferarten der GattungSitophilus ersichtlich. Kornkäfer der ArtS. granarius, die mit verwachsenen Deckflügeln (Elytra) sowie atrophierten Hinterflügeln versehen sind, müssen wegen ihrer Flugunfähigkeit dauernd in Kornspeichern leben. Andererseits kommt der zeitweilig fliegende ReiskäferS. oryzae gelegentlich in Getreidefeldern, häufiger jedoch in Vorratslagern, vor. Der intensiv fliegende MaiskäferS. zeamais entwickelt und vermehrt sich an reifenden Maiskörnern auf den Feldern ebenso häufig wie an getrockneten Getreidearten, die in Speichern gelagert sind. Vermutlich waren während der Zeit, in der die Samengröße wild-wachsender Getreidesorten für das Larvenwachstum vonS. granarius noch nicht reichte, vertrocknete und rissige Eicheln (Quercus spp.) ein natürlich vorkommendes Nährsubstrat des Kornkäfers. Tatsächlich können sichS. granarius sowieS. glandium an aufgesprungenen Eicheln annähernd normal entwickeln und fortpflanzen. Eine ähnliche Anpassungsweise der Ernährung an unreife, reife sowie lagernde Leguminosensamen ist von mehreren Samenkäferarten (Bruchidae) bekannt. Mehrere Gattungen der Dermestidae (Anthrenus, Attagenus, Dermestes undTrogoderma), Cleridae (Necrobia) sowie anderer Käferfamilien (Alphitobius, Tenebrio, Oryzaephilus undPtinus) ernähren sich im Freiland an Eiern und Larven von Insekten sowie an Pflanzensamen, die in runzeliger Baumrinde vorhanden sind, ebenso an den verzehrbaren Überresten in Spinngeweben und Nestern gesellig-lebender Insekten sowie Nestern synanthroper Vögel, Nagetiere und Fledermäuse. Mehrere Arten der genannten Gattungen leben wechselweise in ihren natürlichen Reservoiren bzw. an gespeicherten Lebensmitteln tierischer und pflanzlicher Herkunft. Es wurde angenommen, daß die nachstehend angeführten Eigenschaften die Anpassung freilebend-vorkommender Insektenarten an das ununterbrochene Leben in Nahrungsmittelspeichern entscheidend gefördert haben: 1. leistungsfähiger Wasserhaushalt, vorwiegend mit Hilfe kryptonephrischer Malpighigefäße, Ausscheidung der wenig löslichen Harnsäure sowie Wassergewinn mittels Nährstoffoxydation; 2. breites Spektrum nutzbarer Nahrungsmittel (Polyphagie); 3. Verfügbarkeit von symbiotischen Mikroorganismen, die die in Nahrungsmitteln fehlenden Nährstoffe ergänzen können; 4. normale Paarung und Eiablage bei verminderter Lichtstärke und Zwielichtphase sowie bei geringer Raumausdehnung und schwacher Luftbewegung, sowie 5. Einschub einer Larvendiapause (die temporäre Entwicklungsunterbrechung hervorruft) zur Überbrückung ungünstiger Umweltbedingungen.
    Notes: Abstract The dwellers of ancient Egypt (km't*) have left in their tombs, paintings and papyri an immeasurable legacy of information concerning their religion, writing, language, agriculture, food storage and pest control. Several insect species (belonging to the families Anobiidae, Braconidae, Cleridae, Curculionidae, Cyclorrhapha, Dermestidae, Phycitidae, Ptinidae and Tenebrionidae) were found in the corpses (kha't) as well as the food offerings (pert er kheru) given to the deceased, which have been buried in predynastic (∼4500–2900 B. C.) and dynastic tombs (∼2900 B. C. –395 A. D.). These funerary insects witness the early occurrence of necrophagous and graminivorous pests infesting human and animal corpses as well as stored food offerings. Such infestations by harmful intruders may represent one of the first traceable links between insects and man in history. The understandable anxiety of the priests that tombdefiling insects (apshait) may injure the mummified body of the dead, is expressed in chapter 36 of the Book of the Dead (XVIII.–XXII. Dynasty), used as a manual of instructions for the resurrected deceased (aakhu) in the underworld (duat). It is understood that the ancient Egyptians were not able to foresee that extensive employment of spacious stores stuffed with food supplies will attract 2–3 dozens of insect species and provide them with vast amounts of desiccated seeds, plant and animal tissues. The insects thus gained optimal conditions for their propagation and rapid build-up of dense pest populations. The country-wide use of large granaries and other food stores can be regarded as an early historical incidence interfering with the natural equilibrium among insects and man. The insect species breeding in desiccated cereals and other foodstuffs stored in ancient Egypt have probably originated from ancestors which prevailed in specific natural habitats (where they may be found also at present). The shift of those insect species from natural habitats to the storage environment was probably promoted by the ability of the former to live in storage buildings and utilize desiccated and partly nutrient-deficient foodstuffs—owing to their efficient water conservation, microbial supplementation of lacking nutrients, adaptation of their reproductive behaviour to reduced space and illumination as well as due to employment of a larval diapause in response to adverse conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1612-4766
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Inscriptions concerning pest calamities in the Ancient Orient, found in Assyrian records (8th–7th century, B. C.) and the Old Testament (written 10th–6th century B. C.), suggested that such plagues are ordained and averted by divine will only. Pestaverting attempts in Dynastic Egypt were based on threatening messages and pictures as well as certain protective devices, such as depilation and cleaning of the body, application of licerepelling ointments, avoidance of mosquitoe bites by sleeping towers or network coverings and employment of earth dust to prevent the infestation of stored grain by insects and mites. Fumigations by fragrant resins and herbaceous drugs for ritual and pest-averting purposes were performed in ancient Egypt and Babylon since the 26th–20th century B. C. and in Palestine since the 13thprechristian century. Several ingredients of the above incense blends and ointments act as repellents, insectistatics or insecticides for various species. Early chemical measures of pest control, intending repulsion rather than extermination of detrimental organisms, were recorded in the Ebers Papyrus (written in Egypt∼1550 B. C.).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...