ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 1997-12-02
    Print ISSN: 0026-4598
    Electronic ISSN: 1432-1866
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-12-02
    Print ISSN: 0026-4598
    Electronic ISSN: 1432-1866
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-12-02
    Print ISSN: 0026-4598
    Electronic ISSN: 1432-1866
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1986-07-01
    Print ISSN: 0037-9409
    Electronic ISSN: 1777-5817
    Topics: Geosciences
    Published by EDP Sciences on behalf of Société Géologique de France.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-12-02
    Print ISSN: 0026-4598
    Electronic ISSN: 1432-1866
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    ISSN: 1432-1866
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Resumen (translated by E. Pascual) El periodo que va del Devónico tardío al inicio del Carbonífero (Dinantiense) dentro de la Cadena Hercínica occidental está marcado por la formación de depósitos de sulfuros masivos ligados a rocas volcánicas: Chessy y Chizeuil en las sucesiones de Brévenne y Somme en el Macizo Central francés; Bodennec y La Porte-aux-Moines en la cuenca de Châteaulin en el Macizo Armoricano francés; Riotinto, Neves Corvo, Tharsis y otros en el Complejo Vulcanosedimentario de la Faja Pirítica Ibérica, y Ketara, Draa Sfar y Hajar en el distrito de Jebilet-Guemassa de la Meseta meridional marroquí. Aunque estos depósitos muestran un emplazamiento ligeramente diacrónico en respuesta a la migración del evento metalífero, del Devónico tardío en Francia al Dinantiense en Marruecos, se puede definir a grandes rasgos un ‘‘pico” metalífero a unos 350 m.a. La mineralización de los sectores armoricano, ibérico y marroquí tuvo lugar en dominios epicontinentales de la zona exterior del cinturón hercínico, mientras que la del nordeste del Macizo Central tuvo lugar en su zona interna. Esta diferencia se refleja en variaciones, tanto en las características geoquímicas de los minerales (Sn en las zonas externas y Mo-Ni en las internas) como en su signatura isotópica de plomo, con clara participación del manto sólo en las zonas internas. En muchos casos las mineralizaciones parecen estar estrechamente relacionadas al miembro félsico de las asociaciones magmáticas bimodales, aunque los depósitos de sulfuros masivos de las zonas externas están asociados con más frecuencias con rocas sedimentarias, y los de las zonas internas con rocas volcánicas félsicas. Otro rasgo que conviene señalar es que las secuencias huéspedes de los depósitos de sulfuros masivos parecen desarrollarse frecuentemente sobre formaciones caóticas (particularmente con olistolitos), reflejando el comienzo de la actividad hercínica orogénica en la zona externa. Se puede concluir que el pico de mineralizaciones se desarrolló en dominios tectónicos tensionales durante un periodo de convergencia de placas, y que ocurrió hace unos 350 m.a. después de un periodo mayor devónico de compresión, pero antes del cierre continental carbonífero.
    Notes: Abstract The Late Devonian-Early Carboniferous (Dinantian) within the Western Hercynides is marked by the formation of volcanic-hosted massive sulphide deposits: Chessy and Chizeuil in the Brévenne and Somme successions of the French Massif Central; Bodennec and La Porte-aux-Moines in the Châteaulin Basin of the French Armorican Massif; Rio Tinto, Neves-Corvo, Tharsis, etc., in the Volcano-Sedimentary formation of the Iberian Pyrite Belt; and Ketara, Draa Sfar and Hajar in the Jebilet-Guemassa district of the Moroccan Southern Meseta. Although these deposits show a slightly diachronous emplacement in response to a progressive migration of the metalliferous event from Late Devonian in France to Dinantian in Morocco, it is nevertheless possible to define an overall metalliferous ‘‘peak” around 350 Ma. The mineralization of the Armorican, Iberian and Moroccan sectors took place in epicontinental domains of the outer zone of the Hercynian belt, whereas that of the northeastern Massif Central occurred within the inner zone of the belt. This difference is registered by variations both in the geochemical characteristics of the ores (Sn in the outer zone and Mo-Ni in the inner zone) and in their lead isotopic signatures (clear mantle participation exclusively in the inner zone). In many cases the ores appear to be closely related to the felsic member of a bimodal magmatic association, although the massive sulphide deposits in the outer zone are more commonly associated with sedimentary rocks whereas those in the inner zone are hosted by felsic volcanic rocks. Another feature that should be noted is that the host sequences of the massive sulphide deposits commonly seem to be underlain by chaotic formations (notably with olistoliths) reflecting the beginning of Hercynian orogenic activity in the outer zone. It can be concluded that the peak mineralization took place within tensional domains developed during a period of plate convergence, and that it occurred around 350 Ma after a major period of Devonian compression but before the Carboniferous continental closure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1866
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The stringer zones and commonly the interaction zone at the base of the massive sulphide mounds in the Iberian Pyrite Belt contain bismuth and cobalt minerals that are not found in the overlying massive sulphides. These are fairly rare cobalt sulphoarsenides (cobaltite, alloclasite, galucodot) that were formed at the beginning of the massive sulphide genesis, and fairly common bismuth sulphides (bismuthinite, hammarite, wittichenite, cosalite, kobellite, joseite, etc.), including species rare at world scale (nuffieldite, giessenite, jaskolskiite) that were deposited from last stage high-temperature (〉 300 °C) copper-bearing fluids containing Bi (Te, Se). The last stage fluids precipitated chalcopyrite containing Cu, Bi, Te, (Se) sulphosalts at the base of the sulphide mound to form a high cupriferous zone. Their interaction with the massive sulphides is reflected by the formation of an exchange zone, a few metres thick, showing chalcopyrite disease textures, at the base of the mound; this zone forms the upper limit of potentially economic copper enrichment and of bismuth minerals. Gold is undoubtedly in part, if not totally, related to this last phase. The bismuth concentrations being equivalent in the massive sulphides and the stringers, the presence of bismuth minerals in the stringer zones results from high-temperature conditions combined with a rarity of galena, which impedes absorption of available Bi. The distribution of these bismuth minerals provides a basic mineralogical zoning in the stringer zone, with a deep, low-aS2 zone containing native bismuth and tellurides and a shallow, higher-aS2 zone in contact with the massive ore sensu stricto and containing complex bismuth sulphides. These results make it possible to distinguish between sulphide veinlets belonging to stockwork zones of massive orebodies and veinlets of an ambiguous nature, and provide mineralogical criteria for the proximity of copper-rich zones. They enrich the very complex mineralogy of the Iberian Pyrite Belt.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Mineralium deposita 33 (1997), S. 59-81 
    ISSN: 1432-1866
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Resumen (translated by E. Pascual) Dado que los lentejones de chert son comunes dentro de la sucesión vulcanosedimentaria que contiene los depósitos de sulfuros masivos de la Faja Pirítica Ibérica (España y Portugal), se han examinado numerosos afloramientos de chert, tanto desde un punto de vista petrográfico como geoquímico, para verificar su posible utilidad en la exploración de sulfuros masivos. El chert se encuentra en dos niveles litoestratigráficos principales (superior e inferior) que también son interpretados como portadores de mineralizaciones. El chert se localiza en los dos casos en el techo de las secuencias volcánicas ácidas o en los sedimentos asociados. No hemos podido observar las relaciones entre sulfuros masivos y chert, pero se ha descrito que algunas de las mayores masas de la provincia (Lousal, La Zarza, Tharsis, Planes-San Antonio en Ríotinto, Neves) están localmente recubiertas por facies de chert. Se han reconocido cuatro tipos principales entre los cherts y facies asociadas: 1) chert hematítico rojo ± magnetita; 2) chert de radiolarios y/o con textura sedimentaria (conglomerático), con hematites y/o óxidos de manganeso; 3) chert pálido sulfurado; 4) facies con rodonita y/o carbonatos de Mn ± magnetita. En la parte española de la provincia el chert de radiolarios sólo aparece en el nivel superior, en tanto que la distribución de los otros tipos parece aleatoria. El origen hidrotermal del chert sudibérico se refleja en su alto contenido en Fe-Mn y en su escasa abundancia en Co-Ni-Cu. La presencia de pequeñas anomalías positivas de Ce indica un ambiente marino somero (plataforma o mar epicontinental), lo que concuerda con los datos vulcanológicos y sedimentológicos. El chert se emplazó bajo el fondo marino por precipitación química y/o alteración y reemplazamiento de la roca huésped, de la cual quedan trazas, como fantasmas de fenocristales y altos contenidos en Al, Ti y tierras raras. Las relaciones macro y microscópicas indican que primero se formaron las facies de óxidos (hematites ± magnetita), proporcionando una cubierta protectora aislante frente al ambiente marino y favoreciendo la evolución hacia sulfuros masivos. La facies de carbonatos y silicatos de Mn + cuarzo ± clorita + sulfuros parece ser aún más tardía. No ha sido posible discriminar un chert que se pueda considerar representativo como marcador lateral de sulfuros masivos. Además, tanto las observaciones de campo como los datos geoquímicos parecen indicar una relativa independencia de esta actividad hidrotermal silícea respecto de la actividad hidrotermal que produce los sulfuros masivos. Así lo indica también la signatura isotópica de plomo del chert, que es apreciablemente más radiogénica que la de los sulfuros masivos. El enriquecimiento en plomo de la facies de chert sulfurado indica la participación de una fuente diferente de la de los sulfuros masivos (sedimentos, agua marina). Por tanto, debe ser contemplada la hipótesis de un chert hidrotermal independiente, en la cual el chert refleja actividad hidrotermal submarina de baja temperatura, que se hace más evidente durante una “ruptura” en la sucesión vulcanosedimentaria, pero que puede haber competido localmente con la actividad hidrotermal de alta temperatura que da origen a los sulfuros masivos. Así, el interés del chert estriba en su significado paleodinámico como marcador de los periodos volcánicos de calma y en su posible papel como cobertura protectora aislante, favorable al depósito de sulfuros masivos.
    Notes: Abstract Since lenses of chert are common within the volcano-sedimentary succession hosting the massive sulphide deposits of the Iberian Pyrite Belt (Spain and Portugal), we examined numerous chert occurrences, both petrographically and geochemically, to test their possible value for massive sulphide exploration. The chert is found at two main lithostratigraphic levels (upper and lower) that are also interpreted as massive-sulphide bearing. In both cases the chert is located at the top of acidic volcanic sequences or in the associated sediments; we have not been able to observe the relationships between massive sulphides and chert, but some of the large orebodies of the Province (Lousal, La Zarza, Tharsis, Planes-San Antonio body of Rio Tinto, Neves) are described as being locally capped by chert facies. Four main types are recognized among the chert and associated facies: (1) red hematitic chert ± magnetite; (2) radiolarian and/or sedimentary-textured (conglomeratic) chert with hematite and/or Mn oxides; (3) pale sulphidic chert; (4) rhodonite and/or Mn carbonate ± magnetite facies. In the Spanish part of the Province the radiolarian chert is confined to the upper level; the distribution of the other types appears to be haphazard. The hydrothermal origin of the South Iberian chert is shown by its high Fe-Mn and low Co-Ni-Cu contents. The presence of small positive Ce anomalies indicates a shallow marine environment (shelf or epicontinental sea), which is consistent with the volcanological and sedimentological data. The chert was emplaced below the sea floor through chemical precipitation and/or through alteration and replacement of the country rock, residual traces of which are ghost phenocrysts and high Al, Ti and rare earth contents. Macro- and microscopic relationships indicate that the oxide facies (hematite ± magnetite) formed first, probably providing a protective insulating cover against the marine environment and enabling an evolution towards sulphide facies; a phase of Mn carbonate and silicate + quartz ± chlorite + sulphides appears to be even later. It was not possible, through discrimination, to isolate a chert that could be considered as representing a lateral marker of massive sulphides; moreover, both field observations and geochemical data seem to indicate a relative independence of this siliceous sulphide hydrothermal activity from the hydrothermal activity giving rise to the massive sulphides. Such is also indicated by the lead isotopic signature of the chert, which is appreciably more radiogenic than that of the massive sulphides; the lead enrichment in the sulphidic chert facies indicates the participation of a different source (sediments, sea water) from that of the massive sulphides. The hypothesis of an independent hydrothermal “chert” event can thus be envisaged, wherein the chert reflects submarine low-temperature hydrothermal activity that is most apparent during a “break” within the volcano-sedimentary succession and which may locally have competed with the high-temperature hydrothermal activity giving rise to the massive sulphides. The interest of the chert thus rests in its palaeodynamic significance, as a marker of periods of volcanic quiescence, and in its possible role as a protective insulating cap favourable to the deposition of massive sulphides.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1866
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Resumen (translated by E. Pascual) Durante la década pasada, la Faja Pirítica Ibérica (FPI) ha sido un área de actividad minera e investigación cientifica renovadas, lo que ha conducido a la obtención de nuevos datos y conceptos geológicos y metalogénicos, que se exponen sucintamente en este Número Especial. La razón de este interés en la FPI, que forma parte del cinturón orogénico hercínico, es que sus rocas, cuyas edades abarcan desde el Devónico tardío al Carbonífero Medio, albergan una enorme cantidad de mineralizaciones de sulfuros masivos ligados a vulcanismo (1700 millones de toneladas de sulfuros, que totalizan 14,6 Mt de Cu, 13,0 Mt de Pb, 34,9 Mt de Zn, 46100 toneladas de Ag y 880 toneladas de Au). Las mineralizaciones y su entorno muestran signaturas que se pueden relacionar con la mineralogía y la zonación de las masas de sulfuros, con los isótopos de plomo de la mineralización, con las variaciones en los halos de alteración hidrotermal alrededor de las mineralizaciones, con los caracteres geoquímicos de las rocas volcánicas bimodales que albergan los sulfuros masivos, con la compleja evolución tectónica del conjunto durante la orogenia hercínica, con la existencia de paleofallas y estructuras sinsedimentarias que actuaron como canales y trampas de descarga para los fluidos metalíferos y los gossans que se desarrollaron sobre los sulfuros. Se han deducido criterios geológicos discriminantes para cada área de conocimiento, que pueden ser útiles para la exploración minera, complementando las técnicas más tradicionales de prospección. Aunque la cuestión del entorno geodinámico de la FPI todavía es materia de debate, cualquier interpretación tiene que tener ahora en cuenta algunas restricciones incontrovertibles: por ejemplo, los caracteres geoquímicos de una gran parte de las rocas básicas son comparables a los de basaltos derivados del manto y emplazados en entornos tectónicos extensionales, y las rocas ácidas asociadas se produjeron a partir de un protolito cortical básico, a presiones bajas o intermedias y asociadas a un abrupto gradiente térmico. Por consiguiente, la secuencia vulcanosedimentaria que contiene los sulfuros masivos difiere claramente de las series recientes relacionadas con entornos de arco. Consideramos aquí que el entorno tectónico fue extensional y epicontinental y que tuvo lugar durante la convergencia de placas hercínica, que culminó en deformación “thin-skinned” y acreción del terreno constituído por la Zona Sudportuguesa al bloque continental paleozoico ibérico.
    Notes: Abstract The Iberian Pyrite Belt (IPB) has, over the past decade, been an area of renewed mining activity and scientific research that has resulted in a wealth of new data and new geological and metallogenic concepts that are succinctly presented in this Thematic Issue. The reason for this interest in the IPB, which forms part of the Hercynian orogenic belt, is that its Late Devonian to Middle Carboniferous rocks host a huge quantity of volcanic-hosted massive sulphide (VMS) mineralization (1700 Mt of sulphides, totalling 14.6 Mt Cu, 13.0 Mt Pb, 34.9 Mt Zn, 46100 t Ag and 880 t Au). The mineralization and its environment display a number of typical signatures that can be related to the mineralogy and zoning of the sulphide orebodies, to the lead isotopes of the mineralization, to the geochemical and mineralogical variations in the hydrothermal alteration halos surrounding the orebodies, to the geochemical characteristics of the bimodal volcanics hosting the VMS, to the complex structural evolution during the Hercynian orogeny, to the presence of palaeofaults and synsedimentary structures that acted as channels and discharge traps for the metalliferous fluids, and to the gossans developed over VMS. Discriminant geological criteria have been deduced for each domain which can be helpful in mineral exploration, complementing the more traditional prospecting techniques. Although the question of the IPB's geodynamic setting is still under debate, any interpretation must now take into account some incontrovertible constraints: for example, the geochemical characteristics of a large part of the basic lavas are comparable to those of mantle-derived basalts emplaced in extensional tectonic settings, and the associated acidic rocks were produced by melting of a basic crustal protolith at low- to medium-pressures and a steep geothermal gradient, thus, the sulphide-bearing volcano-sedimentary sequence differs strongly from recent arc-related series. It is considered here that the tectonic setting was extensional and epicontinental and that it developed during the Hercynian plate convergence, that culminated in thin-skinned deformation and accretion of the South Portuguese terrane to the Iberian Paleozoic continental block.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...