ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    Publication Date: 2020-01-17
    Type: Dataset
    Format: text/tab-separated-values, 78 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lebrato, Mario; Mendes, Pedro André; Steinberg, Deborah K; Birsa, Laura M; Benavides, Mar; Oschlies, Andreas (2013): Jelly biomass sinking speed reveals a fast carbon export mechanism. Limnology and Oceanography, 58(3), 1113-1122, https://doi.org/10.4319/lo.2013.58.3.1113
    Publication Date: 2020-01-17
    Description: Sinking of gelatinous zooplankton biomass is an important component of the biological pump removing carbon from the upper ocean. The export efficiency, e.g., how much biomass reaches the ocean interior sequestering carbon, is poorly known because of the absence of reliable sinking speed data. We measured sinking rates of gelatinous particulate organic matter (jelly-POM) from different species of scyphozoans, ctenophores, thaliaceans, and pteropods, both in the field and in the laboratory in vertical columns filled with seawater using high-quality video. Using these data, we determined taxon-specific jelly-POM export efficiencies using equations that integrate biomass decay rate, seawater temperature, and sinking speed. Two depth scenarios in several environments were considered, with jelly-POM sinking from 200 and 600 m in temperate, tropical, and polar regions. Jelly-POM sank on average between 850 and 1500 m/d (salps: 800-1200 m/d; ctenophores: 1200-1500 m/d; scyphozoans: 1000-1100 m d; pyrosomes: 1300 m/d). High latitudes represent a fast-sinking and low-remineralization corridor, regardless of species. In tropical and temperate regions, significant decomposition takes place above 1500 m unless jelly-POM sinks below the permanent thermocline. Sinking jelly-POM sequesters carbon to the deep ocean faster than anticipated, and should be incorporated into biogeochemical and modeling studies to provide more realistic quantification of export via the biological carbon pump worldwide.
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-24
    Description: Global records on gelatinous zooplankton for the past 200 years.
    Description: The Jellyfish Database Initiative (JeDI) is a scientifically-coordinated global database dedicated to gelatinous zooplankton (members of the Cnidaria, Ctenophora and Thaliacea) and associated environmental data. The database holds 476,000 quantitative, categorical, presence-absence and presence only records of gelatinous zooplankton spanning the past four centuries (1790-2011) assembled from a variety of published and unpublished sources. Gelatinous zooplankton data are reported to species level, where identified, but taxonomic information on phylum, family and order are reported for all records. Other auxiliary metadata, such as physical, environmental and biometric information relating to the gelatinous zooplankton metadata, are included with each respective entry. JeDI has been developed and designed as an open access research tool for the scientific community to quantitatively define the global baseline of gelatinous zooplankton populations and to describe long-term and large-scale trends in gelatinous zooplankton populations and blooms. It has also been constructed as a future repository of datasets, thus allowing retrospective analyses of the baseline and trends in global gelatinous zooplankton populations to be conducted in the future.
    Description: This project was funded by the National Science Foundation Award OCE-1030149
    Keywords: Jellyfish ; Cnidaria ; Ctenophore ; Medusa ; Salp ; Urochordate ; Tunicate ; Siphonophore ; Gelatinous zooplankton
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Format: application/pdf
    Format: text/plain
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-04
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 4 (2013): 155, doi:10.3389/fmicb.2013.00155.
    Description: Growth and calcification of the marine coccolithophorid Emiliania huxleyi is affected by ocean acidification and macronutrients limitation and its response varies between strains. Here we investigated the physiological performance of a highly calcified E. huxleyi strain, NZEH, in a multiparametric experiment. Cells were exposed to different CO2 levels (ranging from 250 to 1314 μatm) under three nutrient conditions [nutrient replete (R), nitrate limited (-N), and phosphate limited (-P)]. We focused on calcite and organic carbon quotas and on nitrate and phosphate utilization by analyzing the activity of nitrate reductase (NRase) and alkaline phosphatase (APase), respectively. Particulate inorganic (PIC) and organic (POC) carbon quotas increased with increasing CO2 under R conditions but a different pattern was observed under nutrient limitation. The PIC:POC ratio decreased with increasing CO2 in nutrient limited cultures. Coccolith length increased with CO2 under all nutrient conditions but the coccosphere volume varied depending on the nutrient treatment. Maximum APase activity was found at 561 μatm of CO2 (pH 7.92) in -P cultures and in R conditions, NRase activity increased linearly with CO2. These results suggest that E. huxleyi's competitive ability for nutrient uptake might be altered in future high-CO2 oceans. The combined dataset will be useful in model parameterizations of the carbon cycle and ocean acidification.
    Description: This research was supported by the “European Project on Ocean Acidification” (EPOCA) which received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 211384. This work was also funded in part by The European Research Council (ERC grant 2010-ADG-267931 to Harry Elderfield) and the Spanish Ministry of Science and Innovation (grant CTM2008-05680-C02-01).
    Keywords: Emiliania huxleyi ; Ocean acidification ; Nutrients ; Alkaline phosphatase ; Nitrate reductase ; Calcification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: Modern reef-building corals sustain a wide range of ecosystem services because of their ability to build calcium carbonate reef systems. The influence of environmental variables on coral calcification rates has been extensively studied, but our understanding of their relative importance is limited by the absence of in situ observations and the ability to decouple the interactions between different properties. We show that temperature is the primary driver of coral colony (Porites astreoides and Diploria labyrinthiformis) and reef-scale calcification rates over a 2-year monitoring period from the Bermuda coral reef. On the basis of multimodel climate simulations (Coupled Model Intercomparison Project Phase 5) and assuming sufficient coral nutrition, our results suggest that P. astreoides and D. labyrinthiformis coral calcification rates in Bermuda could increase throughout the 21st century as a result of gradual warming predicted under a minimum CO2 emissions pathway [representative concentration pathway (RCP) 2.6] with positive 21st-century calcification rates potentially maintained under a reduced CO2 emissions pathway (RCP 4.5). These results highlight the potential benefits of rapid reductions in global anthropogenic CO2 emissions for 21st-century Bermuda coral reefs and the ecosystem services they provide.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 54 (4). pp. 1197-1209.
    Publication Date: 2014-01-30
    Description: Thousands of moribund thaliacean carcasses (Pyrosoma atlanticum) were deposited between February and March 2006 at the seafloor in the Ivory Coast area (West Africa). Remotely operated vehicle surveys were conducted in a continuous depth gradient between 20 and 1275 m along an oil pipeline. Video and still photography were used to estimate the carcass distribution, density, and size on the seabed, as well as recording the local megafauna interactions with the gelatinous material. Large patches of dead pyrosomids covered extensive areas on the continental slope, whereas minor aggregations were found on the shelf. The carcasses were in many instances trapped along the pipelines, accumulating extensively in troughs and furrows in the slope, and especially in soft sediment channels. Pyrosoma atlanticum dried samples were used to calculate the carbon content, enabling the extrapolation to the densities and sizes recorded in the video surveys. The average standing stock of organic carbon associated with the carcasses was 〉5 g C m-2 in the whole slope and canyon, with values as high as 22 g C m-2 in certain areas. Eight megafaunal species from three different phyla were observed 63 times directly feeding on the decomposing carcasses. The gelatinous carbon may have contributed substantially to the detrital food web including microbes at the seabed, and certainly to the diet of larger benthic organisms. The organism-level carbon measurements and documented fate of pyrosomid organic carbon is new evidence of the importance of gelatinous material in large-scale processes and elemental cycling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Poster] In: EGU General Assembly 2011, 03.-08.04.2011, Vienna, Austria .
    Publication Date: 2013-06-03
    Description: Increasing atmospheric CO2 concentrations are expected to impact pelagic ecosystem functioning in the near future by driving ocean acidification and increasing global average temperatures. We examined the effects of these two processes on the growth rate and carbon production of the calcifying coccolithophore Gephyrocapsa oceanica. 12 pCO2treatment levels (20-2500 atm) at three temperatures (15, 20 and 25°C) were established in artificial seawater by combined additions of Na2CO3 and HCl (total alkalinity constant in all treatments). Specific growth rate, particulate inorganic carbon (PIC) and particulate organic carbon (POC) production rates showed an optimum curve response to increasing pCO2 at all temperatures. Optima were found between pCO2 levels of 250-650 atm with a tendency to higher pCO2 levels at higher temperatures. Carbon production rates increased with temperature but sensitivity to increasing pCO2 remained similar at all temperatures. The PIC:POC ratio was temperature-independent and linearly decreased with increasing pCO2. The results obtained here contribute to a better understanding of the responses of coccolithophores to changing environmental conditions and may help to parameterize synergistic effects of ocean warming and acidification in marine biogeochemical models.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...