ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 189 (1961), S. 37-39 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] ADMINISTRATION of cortisone to whole animals has been shown to produce the following effects in connective tissue, including bone and cartilage : (1) Reduction in the metachromatic staining of the 'ground substances', mast cells and matrix of bone and cartilage. (2) Reduced uptake of radiosulphate ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 1673-1691 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A quasianalytic model of the dynamic hohlraum is presented. Results of the model are compared to both experiments and full numerical simulations with good agreement. The computational simplicity of the model allows one to find the behavior of the hohlraum radiation temperature as a function of the various parameters of the system and thus find optimum parameters as a function of the driving current. The model is used to investigate the benefits of ablative standoff and quasispherical Z pinches. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 3408-3410 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experiments have been performed to measure, in real time, the formation of AlO molecules from laser-ablated Al atoms in oxygen gas and plasma environments. The Al atom plume is generated by focusing a KrF laser (4 J/cm2) on Al metal targets or polycrystalline Al2O3 (alumina) ceramic. AlO molecule formation has been characterized by emission spectroscopy at 464.82 and 484.22 nm molecular bandheads. Time-integrated and time-resolved optical emissions have been measured of laser-ablated Al atoms interacting with oxygen or argon neutral-gas versus plasma backgrounds generated by a high-voltage capacitive discharge. Results indicate that gas/plasma-phase reactions occur between laser-ablated Al atoms and oxygen. Optimal enhancement of AlO optical emission is measured in oxygen plasmas at about 200 mTorr fill pressure. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 76 (1994), S. 5457-5472 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Resonant holographic interferometry and dye-laser-resonance-absorption photography have been utilized to investigate the expansion of the laser ablation plumes produced by a KrF excimer laser beam (248 nm) focused onto an aluminum target (≈0.1 cm2, 2–6 J/cm2). Plume expansion was studied in vacuum and in background argon gas pressures of 14 mTorr, 52 mTorr, 210 mTorr, 1 Torr, and 35 Torr. The existing theory for the interpretation of resonant interferograms has been extended to account for Doppler shift effects, the diagnostic laser bandwidth, and the selective absorption of the laser beam. Absolute line densities in the range 4.3×1013–1.0×1015 cm−2 have been measured in the ablation plumes, which imply measured Al neutral densities of up to 1×1015 cm−3. The total number of Al neutral atoms in a plume has been measured to be ≈3×1014, which corresponds to a surface etch rate of ≈1 nm/pulse. Expansion velocities in the range 1.1–1.4 cm/μs were measured for the pressures ≤210 mTorr, while ≈0.3 cm/μs was measured for 1 Torr and ≈0.08 cm/μs was measured for 35 Torr. Ablation plume expansion into a 1 Torr rf argon plasma environment was compared with the expansion into a 1 Torr argon gas. The ablation plume appeared to expand and dissipate slightly faster in the plasma.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 2287-2295 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The ionization dynamics (iron ion and neutral atom absolute line densities) produced in the KrF excimer laser ablation of iron and a laser-ablation-assisted plasma discharge (LAAPD) ion source have been characterized by a new dye-laser-based resonant ultraviolet interferometry diagnostic. The ablated material is produced by focusing a KrF excimer laser (248 nm,〈1 J, 40 ns) onto a solid iron target. The LAAPD ion source configuration employs an annular electrode in front of the grounded target. Simultaneous to the excimer laser striking the target, a three-element, inductor–capacitor, pulse-forming network is discharged across the electrode–target gap. Peak discharge parameters of 3600 V and 680 A yield a peak discharge power of 1.3 MW through the laser ablation plume. Iron neutral atom line densities are measured by tuning the dye laser near the 271.903 nm (a 5D–y 5P0) ground-state and 273.358 nm (a 5F–w 5D0) excited-state transitions while iron singly ionized line densities are measured using the 263.105 nm (a 6D–z 6D0) and 273.955 nm (a 4D–z 4D0) excited-state transitions. The line density, expansion velocity, temperature, and number of each species have been characterized as a function of time for laser ablation and the LAAPD. Data analysis assuming a Boltzmann distribution yields the ionization ratio (ni/nn) and indicates that the laser ablation plume is substantially ionized. With application of the discharge, neutral iron atoms are depleted from the plume, while iron ions are created, resulting in a factor of ∼5 increase in the plume ionization ratio. Species temperatures range from 0.5 to 1.0 eV while ion line densities in excess of 1×1015 cm−2 have been measured, implying peak ion densities of ∼1×1015 cm−3. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In the concept of the dynamic hohlraum an imploding Z pinch is optically thick to its own radiation. Radiation may be trapped inside the pinch to give a radiation temperature inside the pinch greater than that outside the pinch. The radiation is typically produced by colliding an outer Z-pinch liner onto an inner liner. The collision generates a strongly radiating shock, and the radiation is trapped by the outer liner. As the implosion continues after the collision, the radiation temperature may continue to increase due to ongoing PdV (pressure times change in volume) work done by the implosion. In principal, the radiation temperature may increase to the point at which the outer liner burns through, becomes optically thin, and no longer traps the radiation. One application of the dynamic hohlraum is to drive an ICF (inertial confinement fusion) pellet with the trapped radiation field. Members of the dynamic hohlraum team at Sandia National Labs have used the pulsed power driver Z (20 MA, 100 ns) to create a dynamic hohlraum with temperature linearly ramping from 100 to 180 eV over 5 ns. On this shot zp214 a nested tungsten wire array of 4 and 2 cm diam with masses of 2 and 1 mg imploded onto a 2.5 mg plastic annulus at 5 mm diam. The current return can on this shot was slotted. It is likely the radiation temperature may be increased to over 200 eV by stabilizing the pinch with a solid current return can. A current return can with nine slots imprints nine filaments onto the imploding pinch. This degrades the optical trapping and the quality of the liner collision. A 1.6 mm diam capsule situated inside this dynamic hohlraum of zp214 would see 15 kJ of radiation impinging on its surface before the pinch itself collapses to a 1.6 mm diam. Dynamic hohlraum shots including pellets were scheduled to take place on Z in September of 1998. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 1619-1625 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A brief review is given of the potential applications of laser ablation in the automotive and electronics manufacturing industries. Experiments are presented on KrF laser ablation of three materials relevant to manufacturing applications: aluminum metal vs aluminum–nitride (AlN) and alumina (Al2O3) ceramics. Plasma and neutral-atom diagnostic data are presented from resonant-holographic-interferometry, dye-laser-resonance-absorption photography, and HeNe laser deflection. Data show that plasma electron densities in excess of 1018 cm−3 exist in the ablation of AlN, with lower densities in Al and Al2O3. Aluminum neutral and ion expansion velocities are in the range of cm/μs. Ambipolar electric fields are estimated to be 5–50 V/cm.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 64 (1993), S. 3308-3313 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A copper vapor laser (511 and 578 nm) is used to drill submillimeter diameter holes in 0.025–0.127 mm thick foils of copper, iron, and titanium. Foils are machined in atmospheric pressure air and argon. The laser is repetitively pulsed at 10 kHz with a per pulse energy of 0.5 mJ giving an average power of 5 W at the sample surface for a pulse width of 40 ns. A p-i-n photodiode and a photomultiplier tube detector are connected to a digital-display timing circuit that records the number of incident laser pulses used to drill through the sample. The number of pulses is converted to an average drilling time and can provide an estimate for the average laser energy used to drill the hole. Typical data for all three materials with a per-pulse fluence of 0.7 J/cm2 ranged from 0.1 to 500 s to produce holes of ∼0.3 mm diameter. Drilling times decreased in some cases by an order of magnitude when machining in air. This is attributed to the increased laser absorption of the metal-oxide layer formed in air and was especially noticeable with titanium. A continuous wave thermal model is used to compare experimental data as well as verify the thermal machining mechanism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: High-energy photons and electrons on the Sandia National Laboratories "Z" accelerator, a z-pinch device, will deposit energy into a capsule and fuel; this may create a potential preheat problem for inertial confinement infusion (ICF). In this article we discuss heating of the capsule and fuel by high-energy photons and electrons. The fuel is heated to 〈2 eV, in a time-integrated sense, on Z by these particles. Because peak implosion occurs at the peak in the soft x-ray emission on Z, the heating at times of interest is reduced roughly an order of magnitude to ∼0.2 eV for times of interest and fuel preheat from this mechanism is concluded to be small. These estimates are generated from time-integrated bremsstrahlung measurements. The uncertainty in the heating is high because the electron spectrum is not known directly, but inferred. In addition, the influence of photons and electrons at energies between 5 and 60 keV is not known. Given the uncertainties at this point, we do not know the impact on the feasibility of internal dynamic hohlraums for a z-pinch-driven ICF implosion. We discuss these issues and suggest directions for further study. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 83 (1998), S. 4466-4471 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Large scale wavelike patterns are observed on an aluminum surface after it is ablated by a series of KrF laser pulses (248 nm, 40 ns, 5 J/cm2). These surface structures have a wavelength on the order of 30 μm, much longer than the laser wavelength. We postulate that these wave patterns are caused by the Kelvin–Helmholtz instability at the interface between the molten aluminum and the plasma plume. A parametric study is given in terms of the molten layer's thickness and of the spatial extent and kinetic energy density in the laser-produced plasma plume. Also included is an estimate of the cumulative growth in a multipulse laser ablation experiment. These estimates indicate that the Kelvin–Helmholtz instability is a viable mechanism for the formation of the large scale structures. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...