ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4943
    Keywords: Autophosphorylation-dependent protein kinase ; vimentin ; assembly ; phosphorylation sites ; cytoskeletal intermediate filament
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The autophosphorylation-dependent protein kinase has been identified as a potent vimentin kinase that incorporates 2 mol of phosphates per mol of protein and generates five major phosphorylation sites in vimentin. Tryptic phosphopeptide mapping by high-performance liquid chromatography followed by sequential manual Edman degradation and direct peptide sequence analysis revealed that Ser-25, Ser-38, Ser-65, and Ser-71 in the amino-terminal domain and Ser-411 in the carboxyl-terminal domain are the phosphorylation sites in vimentin phosphorylated by this kinase, indicating that autophosphorylation-dependent protein kinase is a potent and unique vimentin kinase. Functional study further revealed that phosphorylation of vimentin by autophosphorylation-dependent protein kinase can completely inhibit polymerization and assembly of the cytoskeletal intermediate filament as demonstrated by electron microscopic analysis. Taken together, the results provide initial evidence that the autophosphorylation-dependent protein kinase may function as a vimentin kinase involved in the structure-function regulation of the cytoskeletal system. The results also support the notion that this cyclic nucleotide- and calcium-independent protein kinase may function as a multisubstrate/multifunctional protein kinase involved in the regulation of diverse cell functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-203X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Fusion of mesophyll protoplasts of haploid Nicotiana plumbaginifolia (P) and N. sylvestris (S) resulted in the production of somatic hybrid plants of various ploidy levels. Analysis of the restriction fragment patterns of chloroplast DNA from 118 plants belonging to genome constitutions PS, PPS, PSS, and PPSS revealed that two had a pattern corresponding to a mixture of parental DNA while all the others had the pattern of either N. plumbaginifolia or N. sylvestris. In the latter case, the ratio of the two parental types fits 1∶1 in all the four genome constitutions studied. Since the protoplasts used in the fusion experiment were physiologically similar and the hybrid cells were not deliberately selected, these results suggest that chloroplast segregation in the somatic hybrids is independent of the chloroplast input of the fusion partners and the nuclear background of the fusion products.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 83 (1992), S. 515-527 
    ISSN: 1432-2242
    Keywords: Nicotiana ; Chloroplast DNA ; Restriction patterns ; Physical mapping ; Restriction site variations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The restriction profiles of chloroplast DNA (cpDNA) from Nicotiana tabacum, N. sylvestris, N. plumbaginifolia, and N. otophora were obtained with respect to AvaI, BamHI, BglI, HindIII, PstI, PvuII, SalI, and XhoI. An efficient mapping method for the construction of cpDNA physical maps in Nicotiana was established via a computer-aided analysis of the complete cpDNA sequence of N. tabacum for probe selection. The efficiency of this approach is demonstrated by the determination of cpDNA maps from N. sylvestris, N. plumbaginifolia, and N. otophora with respect to all of the above restriction endonucleases. The size and basic structure of the cpDNA from the three species are almost identical, with an addition of approximately 80 bp in N. plumbaginifolia. The restriction patterns and hence the physical maps between N. tabacum and N. sylvestris cpDNA are identical and there is no difference in the Pvull digests of cpDNA from all four species. Restriction site variations in cpDNA from different species probably result from point mutations, which create or eliminate a particular cutting site, and they were observed spanning the whole chloroplast molecule but highly concentrated in both ends of the large, single-copy region. The results presented here will be used for the forthcoming characterization of chloroplast genomes in the interspecies somatic hybrids of Nicotiana, and will be of great value in completing the exploration of the phylogenetic relationships within this already extensively studied genus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 233 (1992), S. 411-418 
    ISSN: 1617-4623
    Keywords: Cryptic Ac-homologous sequence ; Activator transposable element ; Hypermethylation ; Transposition ; Maize
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Sequences sharing homology to the transposable element Activator (Ac) are prevalent in the maize genome. A cryptic Ac-like DNA, cAc-11, was isolated from the maize inbred line 4Co63 and sequenced. Cryptic Ac-11 has over 90% homology to known Ac sequences and contains an 11 by inverted terminal repeat flanked by an 8 by target site duplication, which are characteristics of Ac and Dissociation (Ds) transposable elements. Unlike the active Ac element, which encodes a transposase, the corresponding sequence in cAc-11 has no significant open reading frame. A 44 by tandem repeat was found at one end of cAc-11, which might be a result of aberrant transposition. The sequence data suggest that cAc-11 may represent a remnant of an Ac or a Ds element. Sequences homologous to cAc-11 can be detected in many maize inbred lines. In contrast to canonical Ac elements, cAc-11 DNA in the maize genome is hypermethylated and does not transpose even in the presence of an active Ac element.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 49 (1992), S. 378-393 
    ISSN: 0730-2312
    Keywords: okadaic acid ; isoforms of vimentin ; hyperphosphorylation ; dephosphorylation ; intermediate filaments ; brain tumor cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Okadaic acid (OA), a protein phosphatase inhibitor, was found to induce hyperphosphorylation and reorganization of vimentin intermediate filaments in 9L rat brain tumor cells. The process was dose dependent. Vimentin phosphorylation was initially enhanced by 400 nM OA in 30 min and reached maximal level (about 26-fold) when cells were treated with 400 nM OA for 90 min. Upon removal of OA, dephosphorylation of the hyperphosphory-lated vimentin was observed and the levels of phosphorylation returned to that of the controls after the cells recovered under normal growing conditions for 11 h. The phosphorylation and dephosphorylation of vimentin induced by OA concomitantly resulted in reversible reorganization of vimentin filaments and alteration of cell morphology. Cells rounded up as they were entering mitosis in the presence of OA and returned to normal appearance after 11 h of recovery. Immuno-staining with anti-vimentin antibody revealed that vimentin filaments were disassembled and clustered around the nucleus when the cells were treated with OA but subsequently returned to the filamentous states when OA was removed. Two-dimensional electrophoresis analysis further revealed that hyperphosphorylation of vimentin generated at least seven isoforms having different isoelectric points. Furthermore, the enhanced vimentin phosphorylation was accompanied by changes in the detergent-solubility of the protein. In untreated cells, the detergent-soluble and -insoluble vimentins were of equal amounts but the solubility could be increased when vimentins were hyperphosphorylated in the presence of OA. Taken together, the results indicated that OA could be involved in reversible hyperphosphorylation and reorganization of vimentin intermediate filaments, which may play an important role in the structure-function regulation of cytoskeleton in the cell.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 51 (1993), S. 91-101 
    ISSN: 0730-2312
    Keywords: okadaic acid ; 78-kDa glucose-regulated proteins ; brain tumor cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Okadaic acid (OA), a potent inhibitor of protein phosphatases 1 and 2A, has been widely used as a tool for unravelling the regulation of cellular metabolic processes involving protein phosphorylation/dephosphorylation. It has recently been found that OA can induce reversible hyperphosphorylation of vimentin and reorganization of intermediate filaments [Lee et al., J. Cell. Biochem. 49: 378-393, 1992]. We report here that OA specifically induced the synthesis of a 78-kDa protein, which was identified as the 78-kDa glucose-regulated protein (GRP78) by two-dimensional sodium dodecylsulfate-polyacrylamide gel electrophoresis and peptide mapping. The induction of GRP78 by OA was dose-dependent and reversible. For 7 h treatments, GRP78 synthesis was initially enhanced under 50 nM OA and became the highest (about 6-fold) under 200 nM OA. Meanwhile, under 200 nM OA, GRP78 synthesis was initially enhanced after 4 h and reached its maximal level (about 8-fold) after 15 h of treatment. Subsequently, upon removal of OA, the level of OA-induced GRP78 was reduced to basal level after 12 h of recovery. Induction of GRP78 synthesis by OA was abolished in cells pretreated with actinomycin D and cycloheximide, indicating that it was regulated at the transcriptional level and its induction required de novo protein synthesis. Furthermore, OA suppressed protein glycosylation, and the result lent support to the hypothesis that suppression of protein glycosylation may correlate with induction of GRP78 synthesis. © 1993 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 57 (1995), S. 150-162 
    ISSN: 0730-2312
    Keywords: thermotolerance ; heat-shock response ; cytoskeletal systems ; vimentin ; HSC70 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Withangulatin A (WA), a newly discovered withanolide isolated from an antitumor Chinese herb, has been shown to be a vimentin intermediate filament-targeting drug by using immunofluorescence microscopy. Together with cytochalasin D and colchicine, these drugs were employed to investigate the importance of vimentin intermediate filaments, actin filaments, and microtubules in the development of acquired thermotolerance in 9L rat brain tumor cells treated at 45°C for 15 min (priming heat-shock). Acquired thermotolerance was abrogated in cells incubated with WA before the priming heat-shock but it could be detected in cells treated with WA after the priming heat-shock. In contrast, cytochalasin D and colchicine do not interfere with the development of thermotolerance at all. The intracellular localizations of vimentin and the constitutive heat-shock protein70 (HSC70) in treated cells were examined by using immunofluorescence microscopy and detergent-extractability studies. In cells treated with WA before the priming heat-shock, vimentin IFs were tightly aggregated around the nucleus and unable to return to their normal organization after a recovery under normal growing conditions. In contrast, the IF network in cells treated with WA after the priming heat-shock was able to reorganize into filamentous form after a recovery period, a behavior similar to that of the cells treated with heat-shock only. HSC70 was found to be co-localized with vimentin during these changes. It is suggested that the integrity of intermediate filaments is important for the development of thermotolerance and that HSC70 may be involved in this process by stabilizing the intermediate filaments through direct or indirect binding.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 52 (1993), S. 253-265 
    ISSN: 0730-2312
    Keywords: heat-shock proteins ; stress response ; vimentin ; intermediate filament ; withangulatin A ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Withangulatin A induced cell rounding up and the morphological alteration resulted from the reorganization of all of the major cytoskeletal components, i.e., vimentin, tubulin, and actin, as revealed by immunofluorescence techniques. When the withangulatin A-treated cells changed to a round-up morphology, vimentin intermediate filaments were found to be collapsed and clustered around the nucleus. The alteration was accompanied by characteristic changes of vimentin molecules, including augmentation of phosphorylation, retardation of electrophoretic mobility, and decrease in detergent extractability. The levels of vimentin phosphorylation were augmented by 2.5- and 1.8-fold in cells incubated with 50 μM withangulatin A for 1 and 3 h, respectively. The electrophoretic mobility of vimentin was partially retarded in cells treated with withangulatin A for 1 h at 10 μM and a completely upshift mobility was observed after 5 h treatment at 50 μM. In addition, vimentin molecules became less extractable by nonident P-40 after the cells were treated with withangulatin A and this effect was dose dependent. The decrease in solubility of vimentin was accompanied by the redistribution of HSP72 into the detergent nonextractable fraction and these two events were well correlated. Our results suggest that withangulatin A induced the modification of vimentin, which resulted in the alteration of cell morphology and redistribution of intracellular HSP72, an event that may play an important role in the induction of heat-shock response.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0730-2312
    Keywords: heat-shock proteins ; glucose-regulated proteins ; protein phosphorylation ; heat-shock response ; stress response ; brain tumor cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Induction of heat-shock proteins and glucose-regulated proteins in 9L rat brain tumor cells can be differentially elicited by sodium arsenite, cadmium chloride, zinc chloride, copper sulfate, sodium fluoride, and L-azetidine-2-carboxylic acid. The kinds of stress protein induced by the above chemicals varied considerably, mainly determined by the nature and the concentration of the chemicals, as well as the treatment protocols. In addition, at the concentrations where stress proteins can be induced, the above chemicals were able to suppress general protein synthesis and were cytotoxic. Enhanced phosphorylation of a protein with an apparent molecular weight of 65 kDa was detected during the induction of stress proteins except in azetidine treatments during which uptake of phosphate by the cells was impaired after prolonged incubation. The phosphate moiety on the 65 kDa phosphoprotein appeared to be alkaline-stable and two-dimensional gel electrophoresis revealed that the phosphoprotein resolved into four isoforms with isoelectric points ranging from 5.1 to 5.6. Enhanced phosphorylation of the same protein was also detected in heat-shocked and withangulatin A-treated 9L cells in which stress proteins were induced. It is suggested that this phosphoprotein may be a common target for heat stress response-stimulated phosphorylation and important in the further metabolic responses of the cell to stress. © 1993 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0730-2312
    Keywords: taxol ; microtubules ; vimentin ; intermediate filaments ; protein phosphorylation ; protein kinases ; inhibitors ; cytoskeleton ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Taxol, a microtubule stabilizing agent, has been extensively investigated for its antitumor activity. The cytotoxic effect of taxol is generally attributed to its antimicrotubule activity and is believed to be cell cycle dependent. Herein, we report that taxol induces hyperphosphorylation and reorganization of the vimentin intermediate filament in 9L rat brain tumor cells, in concentration- and time-dependent manner. Phosphorylation of vimentin was maximum at 10-6 M of taxol treatment for 8 h and diminished at higher (10-5 M) concentration. Enhanced phosphorylation of vimentin was detectable at 2 h treatment with 10-6 M taxol and was maximum after 12 h of treatment. Taxol-induced phosphorylation of vimentin was largely abolished in cells pretreated with staurosporine and bisindolymaleimide but was unaffected by H-89, KT-5926, SB203580, genistein, and olomoucine. Thus, protein kinase C may be involved in this process. Hyperphosphorylation of vimentin was accompanied by rounding up of cells as revealed by scanning electron microscopy. Moreover, there was a concomitant reorganization of the vimentin intermediate filament in the taxol-treated cells, whereas the microtubules and the actin microfilaments were less affected. Taken together, our data demonstrate that taxol induces hyperphosphorylation of vimentin with concomitant reorganization of the vimentin intermediate filament and that this process may be mediated via a protein kinase C signaling pathway. J. Cell Biochem. 68:472-483, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...