ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Thin Solid Films 37 (1976), S. 317-321 
    ISSN: 0040-6090
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Thin Solid Films 34 (1976), S. 368 
    ISSN: 0040-6090
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-14
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-27
    Description: Author(s): H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel We employ light-induced double Bragg diffraction of delta-kick collimated Bose-Einstein condensates to create three symmetric Mach-Zehnder interferometers. They rely on (i) first-order, (ii) two successive first-order, and (iii) second-order processes which demonstrate the scalability of the corresp… [Phys. Rev. Lett. 116, 173601] Published Mon Apr 25, 2016
    Keywords: Atomic, Molecular, and Optical Physics
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-01-01
    Description: Purpose. To investigate the safety and feasibility of the use of a vascular closure device (VCD) after endovascular procedures in swine.Material and Methods. In a study on endovascular therapy, VCD (StarClose, Abbott Vascular, Il, USA) was used in 20 female swines to achieve immediate hemostasis after percutaneous right femoral artery (FA) access. 10 animals were sacrificed immediately after the study and 10 animals were sacrificed 28 days after the initial study. To ensure complete hemostasis and patency of the femoral artery, a CT-angiography of the puncture site was performed on day 1 (acute and chronic group) and day 28 (chronic group). After the sacrifice, the femoral artery was explanted and examined macroscopically for signs of VCD dysfunction.Results. Technical success rate was 100% with immediate hemostasis being achieved in all animals. No animals showed evidence of hematoma. During explantation, only small traces of coagulated blood were found in the acute group, while there were no signs of hematoma in the chronic group. CT-angiography immediately after VCD application as well as before sacrifice (chronic group) showed patency of the FA in all cases.Conclusion. The use of VCD to achieve hemostasis after endovascular studies in swine is feasible and safe.
    Print ISSN: 2356-6140
    Electronic ISSN: 1537-744X
    Topics: Natural Sciences in General
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: Mars 2020 will fly the Mars Entry, Descent, and Landing Instrumentation II (MEDLI2) sensor suite consisting of a total of seventeen instrumented thermocouple sensor plugs, eight pressure transducers, two total heat flux sensors, and one radiometer embedded in the thermal protection system (TPS). Of the MEDLI2 instrumentation, eleven instrumented thermocouple plugs and seven pressure transducers will be installed on the heatshield of the Mars 2020 vehicle while the rest will be installed on the backshell. The goal of the MEDLI2 instrumentation is to directly inform the large performance uncertainties that contribute to the design and validation of a Mars entry system. A better understanding of the entry environment and TPS performance could lead to reduced design margins enabling greater payload mass-fraction and smaller landing ellipses. The MEDLI2 total heat flux sensors and radiometer are new instruments that were not flown on the Mars Science Laboratory mission. These sensors directly measure the surface heat flux and radiation at specific backshell locations. The total heat flux sensors use a Schmidt-Boelter sensing element. The radiometer version uses a sapphire window placed over the Schmidt-Boelter sensing element to separate the radiative component of the total heat flux. MEDLI2 recently planned and executed protoflight environmental testing as well planetary protection measures on the flight and flight-spare total heat flux sensors and radiometers. This testing is required to provide confidence in the performance of the flight-lot sensors when exposed to flight-like environments, and to reduce the risk of biological contamination on the planet of Mars with microbes from Earth.
    Keywords: Instrumentation and Photography; Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN66433 , IPPW 2019 - International Planetary Probe Workshop; Jul 08, 2019 - Jul 12, 2019; Oxford; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Mars 2020 will fly the Mars Entry, Descent, and Landing Instrumentation II (MEDLI2) sensor suite consisting of a total of seventeen instrumented thermal sensor plugs, eight pressure transducers, two heat flux sensors, and one radiometer embedded in the thermal protection system (TPS). Of the MEDLI2 instrumentation, eleven instrumented thermal plugs and seven pressure transducers will be installed on the heatshield of the Mars 2020 vehicle while the rest will be installed on the backshell. The goal of the MEDLI2 instrumentation is to directly inform the large performance uncertainties that contribute to the design and validation of a Mars entry system. A better understanding of the entry environment and TPS performance could lead to reduced design margins enabling a greater payload mass-fraction and smaller landing ellipses. To prove that the MEDLI2 system will not degrade the performance of the Mars 2020 TPS, an Aerothermal Do No Harm (DNH) test series was designed and conducted. Like Mars 2020's predecessor, Mars Science Laboratory (MSL), the heatshield material will be Phenolic Impregnated Carbon Ablator (PICA); the Mars 2020 entry conditions are enveloped by the MSL design environments, therefore the development and qualification testing performed during MEDLI is sufficient to show that the similar MEDLI2 heatshield instrumentation will not degrade PICA performance. However, given that MEDLI did not include any backshell instrumentation, the MEDLI2 team was required to design and execute a DNH test series utilizing the backshell TPS material (SLA-561V) with the intended flight sensor suite. To meet the requirements handed down from Mars 2020, the MEDLI2 DNH test series emphasized the interaction between the MEDLI2 sensors and sensing locations with the surrounding backshell TPS and substrucutre. These interactions were characterized by performing environmental testing of four 12" by 12" test panels, which mimicked the construction of the backshell TPS and the integration of the MEDLI2 sensors as seen in Figure 1. The testing included thermal vacuum/ cycling, random vibration, shock, and arc jet testing. The test panels were fabricated by Lockheed Martin, establishing techniques that will be utilized during the Mars 2020 vehicle installation. Each test panel included one thermal sensor plug (two embedded thermocouples), one heat flux sensor, and multiple pressure port holes for evaluation. This presentation will discuss the planning and execution of the MEDLI2 DNH test series. Selected highlights and results of each environmental test will be presented, and lessons learned will be addressed that will feed forward into the planning for the MEDLI2 flight system certification testing.
    Keywords: Spacecraft Instrumentation and Astrionics; Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN39603 , International Planetary Probe Workshop; Jun 12, 2017 - Jun 16, 2017; The Hague; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...