ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 21 (1975), S. 596-597 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A new correlation is presented to describe heat and mass transfer at large Prandtl or Schmidt numbers to power law fluids in fully developed turbulent flow in a pipe. The resulting expression for the Stanton number differs from earlier semiempirical correlations in that it is based on a continuous eddy viscosity distribution from the wall to the center of the pipe and contains no adjustable parameters to be determined from heat transfer data. Nusselt numbers determined by the new correlation are in excellent agreement with data on heat transfer to both pseudoplastic and dilatant fluids.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 23 (1977), S. 774-776 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 9 (1970), S. 107-113 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 10 (1971), S. 91-101 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: A refined Taylor instability model is developed to describe the surface morphology of rhyolite lava flows. The effect of the downslope flow of the lava on the structures resulting from the Taylor instability mechanism is considered. Squire's (1933) transformation is developed for this flow in order to extend the results to three-dimensional modes. This permits assessing why ridges thought to arise from the Taylor instability mechanism are preferentially oriented transverse to the direction of lava flow. Measured diapir and ridge spacings for the Little and Big Glass Mountain rhyolite flows in northern California are used in conjunction with the model in order to explore the implications of the Taylor instability for flow emplacement. The model suggests additional lava flow features that can be measured in order to test whether the Taylor instability mechanism has influenced the flows surface morphology.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 94; 5815-582
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-10
    Description: Macrovoid (MV) formation is a significant problem in evaporatively cast polymeric membranes. MVs are large, elongated or teardrop-shaped pores (~10-50 micron) that can impair membrane structural integrity. Although MVs have been extensively studied, there is no general agreement on the mechanisms governing MV growth. Recently, our research group has formulated the solutocapillary convection (SC) hypothesis, which contends that MV growth involves three principal forces: a Marangoni force generated by surface tension gradients within the MV interface, a viscous drag force, and a gravitationally induced body force. Two sets of complementary experiments were conducted to test the SC hypothesis. Ground-based videomicroscopy flow-visualization (VMFV) was utilized to measure the flow velocities at the MV-casting solution interface and deep within the casting solution. The measurements were performed with casting solutions containing 10 wt% cellulose acetate (CA), 30 wt% H2O, 60 wt% acetone, and 200- ppm TiO2 particles for flow visualization, and the surface tension was controlled by surfactant addition. Qualitatively, the experiments indicated that MV growth occurs in three distinct phases: (1) a very rapid initial growth period, (2) a much slower growth phase, and (3) absorption of selected MVs into the expanding demixed region. The presence of tracer particles inside the MVs suggests the presence of a convective flow, which transfers the particles from the bulk solution to the MV interior. Although the VMFV experiments did not establish any surfactant effect on the interfacial velocities, a statistically significant effect on the MV number density was observed. In the second set of experiments, membranes were cast aboard a KC-135 aircraft under 0-g and 2-g conditions. Despite careful attention to the design and fabrication of the membrane casting apparatus (MCA), several problems were encountered, the most significant of which was the contamination of the casting solution by the activated carbon particles used for solvent absorption.
    Keywords: Nonmetallic Materials
    Type: 2002 Microgravity Materials Science Conference; 268-279; NASA/CP-2003-212339
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Macrovoids (MVs) are large (10-50 micrometers) pores often found in polymeric membranes prepared via phase-inversion techniques. They are generally considered undesirable, as they adversely affect the permeability properties and performance of polymeric membranes for microfiltration, ultrafiltration, and reverse osmosis. However, MVs can be useful in certain thin-film applications in which vapor transmission is necessary, or for use as reservoirs for enzymes or liquid membrane material. If more could be learned about the nature and causes of MV formation, it might be possible to devise techniques to control and/or prevent MV formation that are more effective than those currently employed. Two hypotheses for the MV growth mechanism have been advanced. Reuvers proposed that once initiated, MV growth can be attributed to diffusion of (primarily) solvent to the MV nuclei. Because this mechanism does not involve gross movement of the MV, the presence or absence of body forces such as buoyancy should not significantly affect MV growth. On the other hand, Shojaie et al. proposed that solutocapillary convection induced by a steep surface-tension gradient along the MV/bulk solution interface enhances mass transfer to the growing MV. This interfacial convection exerts a force that pulls the growing MV downward into the casting solution. Both buoyancy and viscous drag hinder MV growth by inhibiting this motion. Thus, removing the buoyancy force by casting in microgravity should augment MV growth according to this hypothesis. Whereas neither surface tension nor gravity has a significant effect on MV growth according to the first hypothesis, buoyancy forces should be important if the second hypothesis is correct. The overall goal of this research is to test these two hypotheses in order to improve our understanding of the MV growth processing solvent-cast polymeric membranes. Studying MV growth in low-gravity conditions is pivotal to our ability to discriminate between these two hypotheses.
    Keywords: Nonmetallic Materials
    Type: Microgravity Materials Science Conference 2000; 1; 273-278; NASA/CP-2001-210827/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1986-04-11
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...