ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 508 (Mar. 2006), p. 615-620 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The atoms site preference in the Al〈sub〉3〈/sub〉Ti-Zn system has been studied using H. Rietveldmethod. The L12 Ti(Al, Zn)〈sub〉3〈/sub〉 particles evolve in a ZnAl25 melt from the L1〈sub〉2〈/sub〉TiZn〈sub〉3〈/sub〉 particles in the ZnTi4 master alloy. It is found that Zn is replaced by Al during the transformation TiZn〈sub〉3〈/sub〉 → Ti(Al,Zn)〈sub〉3〈/sub〉. In the evolving fcc L12 Ti(Al, Zn)〈sub〉3〈/sub〉 phase Ti occupies (0, 0, 0) position while Al and Zn occupy (0, 0.5, 0.5) position, similarly to Al and X in the Al〈sub〉3〈/sub〉Ti-X systems, where X = Ni, Cr, Mn, Cu, Ag, Pd [1, 2]
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 508 (Mar. 2006), p. 281-286 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The microstructure of cast Zn-25wt%Al alloy inoculated by addition of a Zn-4wt%Timaster alloy (ZnTi4) has been studied using scanning electron microscopy and electron back-scatter diffraction (EBSD). It is found that Ti(Al,Zn)〈sub〉3〈/sub〉 particles act as nucleation centres for grains of the primary solid solution of Zn in Al (α' phase). The Ti(Al,Zn)〈sub〉3〈/sub〉 particles evolve in melt from the TiZn〈sub〉3〈/sub〉 particles in the ZnTi4 master alloy. EBSD shows that α' phase dendrites are in the same crystallographic orientation as the Ti(Al,Zn)〈sub〉3〈/sub〉 particles on which they nucleate. It is also found that some of the Ti(Al,Zn)〈sub〉3〈/sub〉 particles do not have any well-defined crystallographic orientation relationship with the α' phase. These particles were probably pushed and then engulfed by growing α' grains which had already nucleated on other particles
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 32 (1996), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : We compared two interpolation schemes for calculation of hourly accumulation of radar-rainfall. The schemes are: (1) the Advection Method, and (2) the Space-Time Kriging Method. The performance of the methods is investigated using numerical simulation experiments. Space-time evolution of rainfall fields is generated from a stochastic model. The generated fields are sampled following typical radar scanning strategies, and the investigated schemes are applied to obtain accumulated rainfall patterns. The statistical results and a visual analysis of the graphical images suggest that it is advisable to use an interpolation scheme for radar observations even when storm velocity is not high. The Space-Time Kriging Method provides the best results for low wind velocity. The Advection Method has the smallest standard deviation and mean absolute error, and preserves well the true rainfall pattern for high wind velocity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 25 (1989), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : The problem of real-time quality control of streamflow data is addressed. Five methods are investigated via a Monte-Carlo simulation experiment based on streamflow data from Bird Creek basin in Oklahoma. The five methods include three deterministic approaches and two statistical approaches. The relative performance of the investigated methods is evaluated under hypothesized random mechanism generating isolated outliers. The deterministic method based on streamflow gradient analysis and the statistical method based on forecast residual analysis perform best in detecting such outliers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-03-01
    Description: The Iowa Flood Center (IFC), established following the 2008 record floods, has developed a real-time flood forecasting and information dissemination system for use by all Iowans. The system complements the operational forecasting issued by the National Weather Service, is based on sound scientific principles of flood genesis and spatial organization, and includes many technological advances. At its core is a continuous rainfall–runoff model based on landscape decomposition into hillslopes and channel links. Rainfall conversion to runoff is modeled through soil moisture accounting at hillslopes. Channel routing is based on a nonlinear representation of water velocity that considers the discharge amount as well as the upstream drainage area. Mathematically, the model represents a large system of ordinary differential equations organized to follow river network topology. The IFC also developed an efficient numerical solver suitable for high-performance computing architecture. The solver allows the IFC to update forecasts every 15 min for over 1,000 Iowa communities. The input to the system comes from a radar-rainfall algorithm, developed in-house, that maps rainfall every 5 min with high spatial resolution. The algorithm uses Level II radar reflectivity and other polarimetric data from the Weather Surveillance Radar-1988 Dual-Polarimetric (WSR-88DP) radar network. A large library of flood inundation maps and real-time river stage data from over 200 IFC “stream-stage sensors” complement the IFC information system. The system communicates all this information to the general public through a comprehensive browser-based and interactive platform. Streamflow forecasts and observations from Iowa can provide support for a similar system being developed at the National Water Center through model intercomparisons, diagnostic analyses, and product evaluations.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-11-01
    Description: The regional water cycle is examined with a special focus on water vapor transport in Iowa during the Iowa Flood Studies (IFloodS) campaign period, April–June 2013. The period had exceptionally large rainfall accumulations, and rainfall was distributed over an unusually large number of storm days. Radar-derived rainfall fields covering the 200 000 km2 study region; precipitable water from a network of global positioning system (GPS) measurements; and vertically integrated water vapor flux derived from GPS precipitable water, radar velocity–azimuth display (VAD) wind profiles, and radiosonde humidity profiles are utilized. They show that heavy rainfall is relatively weakly correlated with precipitable water and precipitable water change, with somewhat stronger direct relationships to water vapor flux. Thermodynamic properties tied to the vertical distribution of water vapor play an important role in determining heavy rainfall distribution, especially for periods of strong southerly water vapor flux. The diurnal variation of the water cycle during the IFloodS field campaign is pronounced, especially for rainfall and water vapor flux. To examine the potential effects of relative humidity in the lower atmosphere on heavy rainfall, numerical simulations are performed. It is found that low-level moisture can greatly affect heavy rainfall amount under favorable large-scale environmental conditions.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-01-26
    Description: This article presents the data collected and analyzed using the University of Iowa’s X-band polarimetric (XPOL) radars that were part of the spring 2013 hydrology-oriented Iowa Flood Studies (IFloodS) field campaign, sponsored by NASA’s Global Precipitation Measurement (GPM) Ground Validation (GV) program. The four mobile radars have full scanning capabilities that provide quantitative estimation of the rainfall at high temporal and spatial resolutions over experimental watersheds. IFloodS was the first extensive test of the XPOL radars, and the XPOL radars demonstrated their field worthiness during this campaign with 46 days of nearly uninterrupted, remotely monitored, and controlled operations. This paper presents detailed postcampaign analyses of the high-resolution, research-quality data that the XPOL radars collected. The XPOL dual-polarimetric products and rainfall are compared with data from other instruments for selected diverse meteorological events at high spatiotemporal resolutions from unprecedentedly unique and vast data generated during IFloodS operations. The XPOL data exhibit a detailed, complex structure of precipitation viewed at multiple range resolutions (75 and 30 m). The inter-XPOL comparisons within an overlapping scanned domain demonstrate consistency across different XPOL units. The XPOLs employed a series of heterogeneous scans and obtained estimates of the meteorological echoes up to a range oversampling of 7.5 m. A finer-resolution (30 m) algorithm is described to correct the polarimetric estimates for attenuation at the X band and obtain agreement of attenuation-corrected products with disdrometers and NASA S-band polarimetric (NPOL) radar. The paper includes hardware characterization of Iowa XPOL radars conducted prior to the deployment in IFloodS following the GPM calibration protocol.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-08-01
    Description: Rainfall maps that are derived from satellite observations provide hydrologists with an unprecedented opportunity to forecast floods globally. However, the limitations of using these precipitation estimates with respect to producing reliable flood forecasts at multiple scales are not well understood. To address the scientific and practical question of applicability of space-based rainfall products for global flood forecasting, a data evaluation framework is developed that allows tracking the rainfall effects in space and time across scales in the river network. This provides insights on the effects of rainfall product resolution and uncertainty. Obtaining such insights is not possible when the hydrologic evaluation is based on discharge observations from single gauges. The proposed framework also explores the ability of hydrologic model structure to answer questions pertaining to the utility of space-based rainfall observations for flood forecasting. To illustrate the framework, hydrometeorological data collected during the Iowa Flood Studies (IFloodS) campaign in Iowa are used to perform a hydrologic simulation using two different rainfall–runoff model structures and three rainfall products, two of which are radar based [stage IV and Iowa Flood Center (IFC)] and one satellite based [TMPA–Research Version (RV)]. This allows for exploring the differences in rainfall estimates at several spatial and temporal scales and provides improved understanding of how these differences affect flood predictions at multiple basin scales. The framework allows for exploring the differences in peak flow estimation due to nonlinearities in the hydrologic model structure and determining how these differences behave with an increase in the upstream area through the drainage network. The framework provides an alternative evaluation of precipitation estimates, based on the diagnostics of hydrological model results.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-07-07
    Description: This paper explores the skill of river stage forecasts produced by the National Weather Service (NWS). Despite the importance of the verification process in establishing a reference that allows advancement in river forecast technology, there is relatively little literature on this topic. This study aims to contribute to this subject. The study analyzed the North Central River Forecast Center’s river stage forecasts for 51 gauges in eastern and central Iowa between 1999 and 2014. The authors explored forecast skill dependence characteristics such as upstream area, water travel time, and the number of gauges located upstream of each forecasting point. They also assessed the influence of rainfall uncertainty on stage error by examining the relationship between the forecast skill and its antecedent 24-h observed rainfall. The results show that when using persistence as a reference for comparison with NWS actual forecasts, the NWS forecasts are better for predictions below and above flood stage. The difference in root-mean-square error (RMSE) between the actual and persistence forecasts ranges between 0.04 and 1.24 ft, and it increases with lead time. Locations with fewer upstream gauges exhibit greater variation in forecast skill than locations that are well gauged, especially at high flood levels. Strong predictive relationships between the physical characteristics of a basin (travel time, upstream drainage area), rainfall quantities, and forecast skill have not been identified.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-01
    Description: Data analyses for the mobile Iowa X-band polarimetric (XPOL) radar from a long-duration rain event that occurred during the NASA Iowa Flood Studies (IFloodS) field campaign are presented. A network of six 2D video disdrometers (2DVDs) is used to derive four rain-rate estimators for the XPOL-5 radar. The rain accumulation validations with a collocated network of twin and triple tipping-bucket rain gauges have highlighted the need for combined algorithms because no single estimator was found to be sufficient for all cases considered. A combined version of weighted and composite algorithms is introduced, including a new R(Ah, Zdr) rainfall estimator for X band, where Ah is the specific attenuation for horizontal polarization and Zdr is the differential reflectivity. Based on measurement and algorithm errors, the weights are derived to be as piecewise constant functions over reflectivity values. The weights are later turned into continuous functions using smoothing splines. A methodology to derive the weights in near–real time is proposed for the composite-weighted algorithm. Comparisons of 2-h accumulations and 8-h event totals obtained from the XPOL-5 with 12 rain gauges have shown 10%–40% improvement in normalized bias over individual rainfall estimators. The analyses have enabled the development of rain-rate estimators for the Iowa XPOL.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...