ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-02-22
    Description: The role of accessory minerals in the incongruent release of Hf and Pb during continental weathering and its implications for the generation of distinct seawater isotope compositions is subject of debate. While it has been suggested that radiogenic Hf and Pb isotope signatures released during the dissolution of rocks are controlled by the relative abundances of minerals with distinct isotope compositions and differences in their resistance to dissolution there has not been a comprehensive experimental investigation of these processes to date. We carried out systematic sequential leaching experiments on fresh and partly weathered granitic rock samples as well as separated zircons from the Central Aar Granite in Switzerland. Combined with major and rare earth element concentrations our new quantitative experimental data reveal systematic preferential release of radiogenic Nd, Hf and Pb isotopes primarily controlled by dissolution characteristics of the host rock's easily dissolvable accessory and major minerals, in particular apatite and sphene, during weak chemical weathering. Moreover, Pb isotope signatures of incipient weathering conditions, contrary to expectations, indicate initial congruent release of Pb from freshly exposed mineral surfaces that becomes subsequently incongruent. During more advanced chemical weathering stages, as well as enhanced physical weathering conditions, the dissolution of major minerals (i.e. feldspars) becomes dominant for Nd and Pb isotope signatures, whereas Hf isotopes are still dominated by contributions from highly radiogenic accessories. Additional leaching experiments of zircon separates were performed to test the specific role of zircons for Hf isotope compositions of riverine runoff. It is demonstrated that zircon is more efficiently dissolved when physical weathering is enhanced. This increased Hf release originating from partial dissolution of zircons, however, is quantitatively not sufficient to explain less radiogenic Hf isotope signatures in seawater during episodes of enhanced mechanical erosion alone. Moreover, the observed addition of Hf from the more congruent dissolution of the zircon-free fractions of the parent rock due to enhanced physical weathering indicate that these minerals also play an important role in controlling Hf isotope signatures released under deglacial conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-01
    Description: The Čoka Marin polymetallic (Cu-Au-Ag-Zn-Pb) deposit belongs to the world-class Bor ore district in Serbia and consists of three lens-shaped orebodies hosted by Late Cretaceous andesitic volcanic rocks. Pyrite is the dominant mineral in the deposit and shows a great variety of textures and zoning. It occurs as fine- to coarse-grained crystals and massive, spongy, colloform, framboidal, oolitic, and replacement aggregates. Complex relationships with other minerals and the presence of microscale mineral inclusions and micro- to nanoscale porosity are common features of the pyrite at Čoka Marin. Minor amounts of Cu (up to 7.9 wt.%), Pb (up to 7 wt.%), As (up to 4 wt.%), Ag (up to 1 wt.%), Te (up to 0.07 wt.%), and rarely Sb (up to 0.11 wt.%) were detected in pyrite using an electron microprobe. Zoning and heterogeneity in pyrite is mainly caused by variable copper content. Structurally bound Cu in pyrite from this deposit reported in a previous study was confirmed by our new electron microprobe analyses. Distinct Pb-bearing zones frequently occur in pyrite following oscillatory zoning and crystal shapes. These zones also contain lesser amounts of the other elements mentioned above. Using the focused ion beam (FIB) technique to prepare electron-transparent foils and transmission electron microscopy (TEM), we found that these elements form nanoscale Pb-(±As, Ag, Cu)-bearing inclusions (mosty
    Print ISSN: 0008-4476
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-08-01
    Description: Pyrite samples from the Radka epithermal, replacement type, volcanic rock-hosted copper deposit, Bulgaria, have been studied using near-infrared (IR) microscopy. Two generations of pyrite based on their textures, composition and behaviour in IR light can be distinguished. Electron microprobe analyses, X-ray elemental mapping and Fourier transform infrared spectroscopy were used to study the relationship between crystal zoning, trace element contents and IR transmittance of pyrite. The observed crystal zoning is related to variable arsenic contents in massive fine-grained and colloform pyrite from the early pyrite–quartz assemblage, and cobalt contents in pyrite crystals from the late quartz–pyrite vein assemblage. There is a negative correlation between trace element content and IR transmittance of pyrite. The IR transparency of pyrite is thus a sensitive indicator of changes in trace element concentrations. Fluid inclusions have only been found in the second pyrite generation. Scanning electron microscopy observations on open fluid inclusion cavities permitted the crystallographic features of vacuoles to be determined. A characteristic feature of primary fluid inclusions in pyrite is a negative crystal habit, shaped mainly by {100}, {111} and {210}. This complicated polyhedral morphology is the reason for the observed opacity of some isometric primary inclusions. Secondary fluid inclusion morphology depends on the nature of the surface of the healed fracture. Recognition of the primary or secondary origin of fluid inclusions is enhanced by using crystallographically oriented sections. Microthermometric measurements of primary inclusions indicate that the second pyrite generation was deposited at maximum P–T conditions of 400 °C and 430 bar and from a fluid of low bulk salinity (3.5–4.6 wt%), possibly KCl-dominant. There are large ranges for homogenisation temperatures in secondary inclusions because of necking-down processes. Decrepitation features of some of pyrite-hosted inclusions and of all inclusions in associated quartz indicate reheating of the veins to 500–550 °C. The late cobalt-rich quartz–pyrite vein assemblage in the Radka deposit may be the shallow manifestation of deeper and genetically related porphyry copper mineralisation. This is a common observation of many intermediate- to high-sulfidation epithermal replacement-type ore bodies in this ore district and possibly the Cretaceous Banat–Srednogorie metallogenic belt in general. ©2002 Springer-Verlag
    Print ISSN: 0026-4598
    Electronic ISSN: 1432-1866
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-01
    Description: The Morococha district in central Peru is characterised by economically important Cordilleran polymetallic (Zn-Pb-Ag-Cu) vein and replacement bodies and the large Toromocho porphyry Cu-Mo deposit in its centre. U-Pb, Re-Os, and 40Ar/39Ar geochronology data for various porphyry-related hydrothermal mineralisation styles record a 3.5-Ma multi-stage history of magmatic-hydrothermal activity in the district. In the late Miocene, three individual magmatic-hydrothermal centres were active: the Codiciada, Toromocho, and Ticlio centres, each separated in time and space. The Codiciada centre is the oldest magmatic-hydrothermal system in the district and consists of a composite porphyry stock associated with anhydrous skarn and quartz-molybdenite veins. The hydrothermal events are recorded by a titanite U-Pb age at 9.3 ± 0.2 Ma and a molybdenite Re-Os age at 9.26 ± 0.03 Ma. These ages are indistinguishable from zircon U-Pb ages for porphyry intrusions of the composite stock and indicate a time span of 0.2 Ma for magmatic-hydrothermal activity. The small Ticlio magmatic-hydrothermal centre in the west of the district has a maximum duration of 0.3 Ma, ranging from porphyry emplacement to porphyry mineralisation at 8.04 ± 0.14 Ma (40Ar/39Ar muscovite cooling age). The Toromocho magmatic-hydrothermal centre has a minimum of five recorded porphyry intrusions that span a total of 1.3 Ma and is responsible for the formation of the giant Toromocho Cu-Mo deposit. At least two hydrothermal pulses are identified. Post-dating a first pulse of molybdenite mineralisation, wide-spread hydrous skarn covers an area of over 6 km2 and is recorded by five 40Ar/39Ar cooling ages at 7.2–6.8 Ma. These ages mark the end of the slowly cooling and long-lived Toromocho magmatic-hydrothermal centre soon after last magmatic activity at 7.26 ± 0.02 Ma. District-wide (50 km2) Cordilleran base metal vein and replacement bodies post-date the youngest recorded porphyry mineralisation event at Toromocho by more than 0.5 Ma. Polymetallic veins (5.78 ± 0.10 and 5.72 ± 0.18 Ma; 40Ar/39Ar ages) and the Manto Italia polymetallic replacement bodies (6.23 ± 0.12 and 6.0 ± 0.2 Ma; 40Ar/39Ar ages) are interpreted to have been formed by a single hydrothermal pulse. Hydrothermal activity ceased after the formation of the base metal vein and replacement bodies. Overlapping monazite U-Pb (8.26 ± 0.18 Ma) and muscovite 40Ar/39Ar ages (8.1 ± 0.5 Ma) from the early base metal stage of one Cordilleran vein sample in the Sulfurosa area provide evidence that a discrete hydrothermal pulse was responsible for polymetallic vein formation 2.6 Ma prior to the district-wide polymetallic veins. These ages pre-date those of Toromocho porphyry Cu-Mo formation and show that Zn-Pb-Ag-Cu mineralisation formed during several discrete magmatic-hydrothermal pulses in the same district. ©2015 Springer-Verlag Berlin Heidelberg
    Print ISSN: 0026-4598
    Electronic ISSN: 1432-1866
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-08-01
    Description: Vlaykov Vruh–Elshitsa represents the best example of paired porphyry Cu and epithermal Cu–Au deposits within the Late Cretaceous Apuseni–Banat–Timok–Srednogorie magmatic and metallogenic belt of Eastern Europe. The two deposits are part of the NW trending Panagyurishte magmato-tectonic corridor of central Bulgaria. The deposits were formed along the SW flank of the Elshitsa volcano-intrusive complex and are spatially associated with N110-120-trending hypabyssal and subvolcanic bodies of granodioritic composition. At Elshitsa, more than ten lenticular to columnar massive ore bodies are discordant with respect to the host rock and are structurally controlled. A particular feature of the mineralization is the overprinting of an early stage high-sulfidation mineral assemblage (pyrite ± enargite ± covellite ± goldfieldite) by an intermediate-sulfidation paragenesis with a characteristic Cu–Bi–Te–Pb–Zn signature forming the main economic parts of the ore bodies. The two stages of mineralization produced two compositionally different types of ores—massive pyrite and copper–pyrite bodies. Vlaykov Vruh shares features with typical porphyry Cu systems. Their common geological and structural setting, ore-forming processes, and paragenesis, as well as the observed alteration and geochemical lateral and vertical zonation, allow us to interpret the Elshitsa and Vlaykov Vruh deposits as the deep part of a high-sulfidation epithermal system and its spatially and genetically related porphyry Cu counterpart, respectively. The magmatic–hydrothermal system at Vlaykov Vruh–Elshitsa produced much smaller deposits than similar complexes in the northern part of the Panagyurishte district (Chelopech, Elatsite, Assarel). Magma chemistry and isotopic signature are some of the main differences between the northern and southern parts of the district. Major and trace element geochemistry of the Elshitsa magmatic complex are indicative for the medium- to high-K calc-alkaline character of the magmas. 87Sr/86Sr(i) ratios of igneous rocks in the range of 0.70464 to 0.70612 and 143Nd/144Nd(i) ratios in the range of 0.51241 to 0.51255 indicate mixed crustal–mantle components of the magmas dominated by mantellic signatures. The epsilon Hf composition of magmatic zircons (+6.2 to +9.6) also suggests mixed mantellic–crustal sources of the magmas. However, Pb isotopic signatures of whole rocks (206Pb/204Pb = 18.13–18.64, 207Pb/204Pb = 15.58–15.64, and 208Pb/204Pb = 37.69–38.56) along with common inheritance component detected in magmatic zircons also imply assimilation processes of pre-Variscan and Variscan basement at various scales. U–Pb zircon and rutile dating allowed determination of the timing of porphyry ore formation at Vlaykov Vruh (85.6 ± 0.9 Ma), which immediately followed the crystallization of the subvolcanic dacitic bodies at Elshitsa (86.11 ± 0.23 Ma) and the Elshitsa granite (86.62 ± 0.02 Ma). Strontium isotope analyses of hydrothermal sulfates and carbonates (87Sr/86Sr = 0.70581–0.70729) suggest large-scale interaction between mineralizing fluids and basement lithologies at Elshitsa–Vlaykov Vruh. Lead isotope compositions of hydrothermal sulfides (206Pb/204Pb = 18.432–18.534, 207Pb/204Pb = 15.608–15.647, and 208Pb/204Pb = 37.497–38.630) allow attribution of ore-formation in the porphyry and epithermal deposits in the Southern Panagyurishte district to a single metallogenic event with a common source of metals. ©2009 Springer-Verlag
    Print ISSN: 0026-4598
    Electronic ISSN: 1432-1866
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-08-01
    Description: Minerals from the tennantite-tetrahedrite series (fahlores) are found as single euhedral crystals and crustiform aggregates in hydrothermal veins of the Gradishte and Petrovitsa Pb-Zn deposits of the Madan ore field, southern Bulgaria. Unusually large compositional variations and fine oscillatory crystal zoning were investigated with electron microprobe analysis. The Gradishte samples correspond dominantly to tennantite, while Petrovitsa crystals have exclusively tetrahedrite composition. Fahlore compositions at Madan correspond to zincian varieties (1.6–1.95 apfu), with low Fe-content (〈0.45 apfu). Minor silver is characteristic only for the Petrovitsa samples, reaching a maximum of 0.30 apfu. The (Cu+Ag) content of the Petrovitsa tennantites and the Cu content of the Gradishte tetrahedrites systematically exceed 10 apfu resulting in compensation of the excess Cu in the structure by Fe3+. Textural characteristics, mineral relationships and available fluid inclusion and stable isotope data suggest that fahlores precipitated in the late stages of mineralization at Madan, at temperature interval of 300–200 °C from oxidizing fluids with mixed (magmatic-meteoric) signatures. ©2013 Springer-Verlag Wien
    Print ISSN: 0930-0708
    Electronic ISSN: 1438-1168
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-22
    Description: The current study has aimed to refine the previously proposed two-fluid mixing model for the Laisvall (sphalerite Rb-Sr age of 467 ± 5 Ma) and Vassbo Mississippi Valley-type deposits hosted in Ediacaran to Cambrian sandstone, Sweden. Premineralization cements include authigenic monazite, fluorapatite, and anatase in the Upper Sandstone at Laisvall, reflecting anoxic conditions during sandstone burial influenced by the euxinic character of the overlying carbonaceous middle Cambrian to Lower Ordovician Alum Shale Formation ( δ 13Corg = −33.0 to −29.5 ‰, δ 15Norg = 1.5 to 3.3 ‰, 0.33 to 3.03 wt% C, 0.02 to 0.08 wt% N). The available porosity for epigenetic mineralization, including that produced by subsequent partial dissolution of pre-Pb-Zn sulfide calcite and barite cements, was much higher in calcite- and barite-cemented sandstone paleoaquifers (29 % by QEMSCAN mapping) than in those mainly cemented by quartz (8 %). A major change in the Laisvall plumbing system is recognized by the transition from barite cementation to Pb-Zn sulfide precipitation in sandstone. Ba-bearing, reduced, and neutral fluids had a long premineralization residence time (highly radiogenic 87S/86Sr ratios of 0.718 to 0.723) in basement structures. As a result of an early Caledonian arc-continent collision and the development of a foreland basin, fluids migrated toward the craton and expelled Ba-bearing fluids from their host structures into overlying sandstone where they deposited barite upon mixing with a sulfate pool ( δ 34Sbarite = 14 to 33 ‰). Subsequently, slightly acidic brines initially residing in pre-Ediacaran rift sediments in the foredeep of the early Caledonian foreland basin migrated through the same plumbing system and acquired metals on the way. The bulk of Pb-Zn mineralization formed at temperatures between 120 and 180 °C by mixing of these brines with a pool of H2S ( δ 34S = 24 to 29 ‰) produced via thermochemical sulfate reduction (TSR) with oxidation of hydrocarbons in sandstone. Other minor H2S sources are identified. Upward migration and fluctuation of the hydrocarbon-water interface in sandstone below shale aquicludes and the formation of H2S along this interface explain the shape of the orebodies that splay out like smoke from a chimney and the conspicuous alternating layers of galena and sphalerite. Intimate intergrowth of bitumen with sphalerite suggests that subordinate amounts of H2S might have been produced by TSR during Pb-Zn mineralization. Gas chromatograms of the saturated hydrocarbon fraction from organic-rich shale and from both mineralized and barren sandstone samples indicate that hydrocarbons migrated from source rocks in the overlying Alum Shale Formation buried in the foredeep into sandstone, where they accumulated in favorable traps in the forebulge setting. ©2015 Springer-Verlag Berlin Heidelberg
    Print ISSN: 0026-4598
    Electronic ISSN: 1432-1866
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2019-03-01
    Description: The role of accessory minerals in the incongruent release of Hf and Pb during continental weathering and its implications for the generation of distinct seawater isotope compositions is subject of debate. While it has been suggested that radiogenic Hf and Pb isotope signatures released during the dissolution of rocks are controlled by the relative abundances of minerals with distinct isotope compositions and differences in their resistance to dissolution there has not been a comprehensive experimental investigation of these processes to date. We carried out systematic sequential leaching experiments on fresh and partly weathered granitic rock samples as well as separated zircons from the Central Aar Granite in Switzerland. Combined with major and rare earth element concentrations our new quantitative experimental data reveal systematic preferential release of radiogenic Nd, Hf and Pb isotopes primarily controlled by dissolution characteristics of the host rock's easily dissolvable accessory and major minerals, in particular apatite and sphene, during weak chemical weathering. Moreover, Pb isotope signatures of incipient weathering conditions, contrary to expectations, indicate initial congruent release of Pb from freshly exposed mineral surfaces that becomes subsequently incongruent. During more advanced chemical weathering stages, as well as enhanced physical weathering conditions, the dissolution of major minerals (i.e. feldspars) becomes dominant for Nd and Pb isotope signatures, whereas Hf isotopes are still dominated by contributions from highly radiogenic accessories.Additional leaching experiments of zircon separates were performed to test the specific role of zircons for Hf isotope compositions of riverine runoff. It is demonstrated that zircon is more efficiently dissolved when physical weathering is enhanced. This increased Hf release originating from partial dissolution of zircons, however, is quantitatively not sufficient to explain less radiogenic Hf isotope signatures in seawater during episodes of enhanced mechanical erosion alone. Moreover, the observed addition of Hf from the more congruent dissolution of the zircon-free fractions of the parent rock due to enhanced physical weathering indicates that these minerals also play an important role in controlling Hf isotope signatures released under deglacial conditions.
    Print ISSN: 0009-2541
    Electronic ISSN: 1872-6836
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-03-01
    Description: This paper aims at providing new insights into W-Sn ore-forming processes within one of the largest granitic provinces in the world (Nanling Range, South China), which was emplaced during the Jurassic-Cretaceous period. The origin, composition and pressure-temperature conditions of fluids involved in the W-Sn ore-forming processes have been investigated by microthermometry, Raman spectroscopy, LA-ICPMS, hydrogen isotope analyses of fluid inclusions and oxygen isotope analyses of minerals from the Maoping and Piaotang W-Sn deposits. For each deposit, pre- (quartz), syn- (wolframite and cassiterite) and post-ore (quartz, topaz and fluorite) minerals were studied.In both deposits, the vast majority of fluid inclusions are aqueous with salinities between 0.0 and 12.6 wt% equiv. NaCl and homogenization temperatures between 136 and 349 °C. A minor proportion (~5%) of inclusions observed in the ore-stage quartz from Maoping have aquo‑carbonic compositions. For both deposits, four compositional groups are defined. Early quartz fluid inclusions are characterized by salinities between 0.4 and 9.0 wt% equiv. NaCl, trapping temperatures between 150 and 350 °C, and pressures between 20 and 150 MPa. LA-ICPMS analyses of these fluid inclusions reveal a wide range of Na, K and Li concentrations, as well as relatively low metal contents (W 〈 40 ppm). Values of δ18O in quartz range from −3.6 to 5.3‰ VSMOW while δD values of the fluid inclusions range from −59 to −51‰ VSMOW. The salinity of fluid inclusions in wolframite, cassiterite, topaz and fluorite is between 2.4 and 11.2 wt% equiv. NaCl, trapping temperatures are between 200 and 600 °C, and pressures range from 20 to 250 MPa. LA-ICPMS analyses of these fluid inclusions reveal higher concentrations of Na, K and Li as well as Cs and metals (e.g. between 10 and 220 ppm W). Values of δ18O in wolframite, cassiterite, topaz and fluorite crystals range from −3.0 to 3.3‰ VSMOW while δD values of fluid inclusions in these mineral phases range from −78 to −72‰ VSMOW.At Piaotang, fluid inclusions in wolframite as well as in post-ore quartz and fluorite have salinities of 5.6 to 12.6 wt% eq. NaCl, trapping temperatures between 150 and 400 °C and pressures of 20 to 150 MPa. LA-ICPMS analyses of these fluid inclusions reveal similar compositions to early quartz fluid inclusions. Values of δ18O in wolframite and quartz crystals range from −0.8 to 5.2‰ VSMOW, while the δD values of fluid inclusions range from −66 to −62‰ VSMOW.Collectively, the data suggest the involvement of four aqueous fluid end-members, mixed episodically in the mineralization process: (A) a low-salinity, low-temperature, metal-poor, low-δ18O, low-δD fluid derived from meteoric water; (B) a high-salinity, high-temperature, metal-poor, high-δ18O, low-δD fluid derived from a differentiated peraluminous granitic magma; (C) a high-salinity, high-temperature, metal-rich, lower δD magmatic fluid derived from a more differentiated peraluminous granitic magma; and (D) a high-salinity, high-temperature, metal-rich, high-δ18O, low-δD magmatic fluid.This study shows that multiple fluids with distinct magmatic and meteoric origins were involved in the formation of these W-Sn deposits and that the dilution of metal-bearing magmatic fluids by meteoric fluids was probably the main driver for ore deposition. The common fluid history of the two deposits studied, as well as similarities with other deposits in the Jiangxi province, points toward common ore-forming processes at the regional scale.
    Print ISSN: 0009-2541
    Electronic ISSN: 1872-6836
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...