ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-2932
    Keywords: accumulation ; chlorophylls ; community structure ; indicator ; metals ; nile water algae ; pollution ; toxicity ; water quality
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The toxic effect of multi metals mixture which exist simultaneously in aquatic ecosystem on natural phytoplankton assemblages (green algae, blue-green algae and diatoms) was studied. For this purpose a laboratory scale unit was designed to evaluate the effect of continuous flow metals mixture in forms if triple and penta metals in Nile water algae. Clear changes in algal biomass in terms of chlorophyll a (chl a) took place when subjected to metals combination. The rise or decline in chl a was in relation with other algal pigments (chl b, chl c, carotenoides and phenophytin), protein and carbohydrate content of algal cells. Substantial changes in phytoplankton community structure was detected and the most tolerant group was blue-green algae followed by green algae while diatoms was the most sensitive group. The most dominant species in all cases were blue-green alga Oscillatoria mougeotii and green alga Scenedesmus quadricauda. In addition clear changes in morphological shape was observed for tolerant species belonging to the three algal groups. Nile water algae has ability to remove and accumulate metals in the following order therefore Zn 〉 Cd 〉 Ni 〉 Cu 〉 Cr. In addition, phytoplankton has ability to recovered from the stress of metals when eliminated from the media and the recovered biomass was nearly equivalent to that before exposing to metals stress. The overall effect of metals mixture depending on the type and number of metals, the algal community structure and ratio between different morphological forms of algae (unicellular, colonial and filamentous).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 10 (1998), S. 547-554 
    ISSN: 1573-5176
    Keywords: herbicide ; green alga ; growth ; nutrients ; photosynthesis ; it Protosiphon botryoides ; respiration ; Thiobencarb
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of the herbicide thiobencarb (Saturn) were tested on the growth and physiology of the chlorophyte Protosiphon botryoides isolated from an Egyptian paddy. Assays were conducted using 16-day batch cultures. Chlorophyll and dry weight biomass yields were significantly reduced at 2–3 mg L-1 thiobencarb, and dark respiration increased and protein decreased significantly at 3 mg L-1. Reductions in exponential specific growth rate (μ) were generally small, but in some cases significant. Thiobencarb also slightly, but significantly, reduced the 77 K fluorescence parameter Fv/Fm, an indicator of maximum photosynthetic efficiency. No consistent dose-dependent changes occurred in chlorophyll per unit dry weight, total carbohydrate or gross photosynthetic capacity. Whereas half of the added thiobencarb was recovered from control (uninoculated) medium, it was largely absent from cells and culture medium after sixteen days, indicating biodegradation by the alga or associated bacteria. P. botryoides recovered fully within sixteen days following subculture in thiobencarb-free medium. Independently varying phosphate and nitrate nine-fold had no clear effect on the sensitivity of P. botryoides to thiobencarb.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...