ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 23 (1984), S. 3708-3715 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Solid state phenomena Vol. 6-7 (Jan. 1989), p. 93-100 
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Solid state phenomena Vol. 95-96 (Sept. 2003), p. 249-254 
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-184X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Leaf wettability, cuticular wax composition, and microbial colonization of upper and lower leaf surfaces of ivy (Hedera helix L.) was investigated for young and old leaves sampled in June and September. Contact angles of aqueous buffered solutions measured on young leaf surfaces ranged between 76° and 86° and were not dependent on the pH value of the applied droplets. Contact angles measured on old leaf surfaces were up to 32°, significantly lower than on young leaf surfaces. Furthermore, contact angles were significantly lower using aqueous solutions of pH 9.0 compared to pH 3.0, indicating the influence of ionizable functional groups on leaf surface wetting properties. Observed changes in leaf wetting properties did not correlate with different levels of alkanoic acids in cuticular waxes. However, microscopic examination of the leaf surfaces indicated the influence of epiphytic microorganisms on wetting properties of old leaves, since their surfaces were always colonized by epiphytic microorganisms (filamentous fungi, yeasts, and bacteria), whereas surfaces of young leaves were basically clean. In order to analyze the effect of epiphytic microorganisms on leaf surface wetting, surfaces of young and clean ivy leaves were artificially colonized with Pseudomonas fluorescens. This resulted in a significant increase and a pH dependence of leaf surface wetting in the same way as it was observed on old ivy leaf surfaces. From these results it can be deduced that the native wetting properties of leaf surfaces can be significantly masked by the presence of epiphytic microorganisms. The ecological implications of altered wetting properties for microorganisms using the leaf/atmosphere interface as habitat are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 2912-2920 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Usually, tokamak core scaling laws are written in terms of dimensionless geometrical quantities and parameters corresponding to Coulomb collisionality, gyro-motion, and plasma beta. However, Lackner [K. Lackner, Comments Plasma Phys. Controlled Fusion 15, 359 (1994)] observed that the temperature profiles also must be the same to obtain the same atomic physics in the divertor region of similar discharges. He obtained a scaling indicating that none of the present tokamaks could be made similar to the International Thermonuclear Experimental Reactor (ITER) [G. Janeschitz et al., J. Nucl. Mater. 220–222, 73 (1995)], but implicitly retained only two body interactions. Subsequent work [P. J. Catto et al., Phys. Plasmas 3, 3191 (1996)] demonstrated that non-two-body effects (multistep radiation, excitation, and ionization processes as well as three body recombination) cannot be ignored for plasma densities above 1019 m−3; the regime in which the ITER divertor must operate. In this reactor relevant regime, scaling law information must be obtained experimentally and by complex numerical simulations. To retain and quantify non-two-body effects on scaling laws we employ numerical simulations from a two dimensional box geometry version of the UEDGE code [D. A. Knoll et al., Phys. Plasmas 3, 293 (1996)] which includes a coupled plasma and neutral fluid description retaining non-two-body effects. Results are presented from a numerical investigation into the upstream parallel heat flux divided by upstream pressure scaling, as well as collisionality scaling, of the tokamak divertor target heat flux and ion saturation current. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 3358-3368 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A combined edge plasma/Navier–Stokes neutral transport model is used to characterize divertor plasma detachment, in the collisional limit for neutrals, on a simplified two-dimensional slab geometry with Alcator-C-MOD-like plasma conditions [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)]. The neutral model contains three momentum equations which are coupled to the plasma through ionization, recombination, and ion–neutral elastic collisions. The neutral transport coefficients are evaluated including both ion–neutral and neutral–neutral collisions. Detachment is brought about via impurity radiation using a fixed fraction impurity model. The transport model is shown to reproduce all salient features of experimentally observed detachment, such as large drops in ion saturation current and plasma heat flux at the divertor plate. The solutions are also shown to be sensitive to volume recombination. A region of relatively high toroidal neutral Mach number is observed upon detachment. Due to the high neutral densities, 75% of the Lyman α radiation is assumed trapped in the problem. A total edge radiative loss (neutrals and impurities) of approximately 75% of the power crossing the separatrix is needed to observe strong detachment on Alcator-C-MOD-like plasmas using the described model. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 3191-3193 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Scaling laws found under the assumption that two-body collisions dominate can be effectively used to benchmark complex multi-dimensional codes dedicated to investigating tokamak edge plasmas. The applicability of such scaling laws to the interpretation of experimental data, however, is found to be restricted to the relatively low plasma densities (〈1019 m−3) at which multistep processes, which break the two-body collision approximation, are unimportant. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 293-303 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A two-dimensional combined edge plasma Navier–Stokes neutral transport model is presented for the simulation of dense recombining divertor plasmas. This model includes ions, electrons, and neutral atoms which undergo Coulomb collisions, electron impact ionization, ion–neutral elastic collisions, three-body and radiative recombination, and neutral–neutral collisions. The advanced fully implicit solution algorithm is briefly described and a variety of results on a model geometry are presented. It is shown that interesting neutral flow patterns can exist and that these flows can convect significant energy. A solution that ignores neutral–neutral collisions is shown to be quantitatively different from one that includes neutral–neutral collisions. Solutions are also shown to be sensitive to the plasma opacity for Lyman α radiation. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Analysis of the experimental data from tokamaks and linear divertor simulators leads to the conclusion that plasma recombination is a crucial element of plasma detachment. Different mechanisms of plasma recombination relevant to the experimental conditions of the tokamak scrape-off layer (SOL) and divertor simulators are considered. The physics of Molecular Activated Recombination (MAR) involving vibrationally excited molecular hydrogen are discussed. Although conventional Electron–Ion Recombination (EIR) alone can strongly alter the plasma parameters, MAR impact can be substantial for both tokamak SOL plasma and divertor simulators. Investigation of the effects of EIR on the plasma flow in divertor simulators shows that due to the balances of (a) energy transport and electron cooling, and (b) the plasma flow and recombination, that EIR extinguishes the simulator plasma at an electron temperature about 0.15 eV. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Instruments and Methods in Physics Research Section A: 326 (1993), S. 3-9 
    ISSN: 0168-9002
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...