ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 1356-1361 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A kinetic model for diffusional growth of silicides in thin-metal-film–silicon systems is proposed. The time dependence of the growth has been shown to be a function of the morphology of the growing silicide and the controlling diffusion process (diffusion in the film, interface diffusion). If the phase grows only in depth the parabolic dependence of silicide thickness h on time t in most cases follows the relation h(approximately-equal-to)t0.5. If silicide grows only in width w, then w(approximately-equal-to)t. In the case of simultaneous change of thickness and width when h/w=const the growth is proportional to t0.33.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 6834-6839 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The evolution of the interface between two mutually insoluble metallic phases, under the influence of a strong electric field is examined. A slight perturbation of the interface away from a plane y=h(x) leads to a component of the electric field along the interface. This creates a diffusion flux of the individual atoms along the interface which, in turn, leads to an increase in the amplitude of the initial perturbation and thus to an interfacial profile instability. The processes is expected to be controlled by interface diffusion in response to three distinct driving forces: the electric field, internal stresses (which arise due to the accumulation or depletion of matter at the interface), and the interfacial curvature. The stress distribution along the interface was found from a self-consistent solution of the elastic problem. For the instability to occur, differences in effective atomic charges, elastic moduli and/or atomic mobilities of the two constituent metals are required. Small sinusoidal corrugations are shown to grow with time for a range of wavelengths. The corrugations can grow monotonically or vary in oscillatory manner, depending on their wavelength. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 3833-3838 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Groove profiles are computed under isotropic conditions for the intersection of a periodic array of grain boundaries with an external surface, assuming that grain boundary flux I is directed to (I(approximately-greater-than)0) or away from (I〈0) the surface. When I=0, the surface assumes an equilibrium (time-independent) profile. For I≠0, in a range bounded by upper and lower limits that depend on geometry and material parameters, a global steady-state develops in which the entire surface advances (I(approximately-greater-than)0) or recedes (I〈0) from its original position at constant velocity. Beyond these limits, the surface near the groove roots becomes diffusively detached from the remaining surface. A rapidly growing ridge (I(approximately-greater-than)0) or slit (I〈0) then develops along each grain boundary, whose tip ultimately translates at constant velocity in a local steady state, leaving the remaining surface behind. These velocity regimes govern the ultimate stability of polycrystalline materials subjected to large electric (electromigration) or stress (creep) fields, especially in thin films where grain size approximates film thickness. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 1669-1672 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have studied morphological changes of an interface in a strong electric field which is normal to the initially planar interface. Electromigration along the interface in a two phase metallic system A-B of the immiscible components has been considered. The stresses arising during electromigration of the components were taken into account. A nonlinear equation has been derived for the interface evolution in the electric field, allowing for curvature of the interface. It was shown that the interface diffusion in an electric field leads to the formation of a periodic corrugation on the interface if the components are distinguished by their electric charges. The corrugation increases with time and is transformed into a channel-hillock-like structure. The nonlinear equation was analyzed numerically for the steady-state case. The shape and the growth rate of hillocks on the interface have been calculated. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 80 (1996), S. 6670-6676 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Advancement of a fine slit along a planar grain boundary in an electric field E0, applied parallel to the slit, is investigated by considering electromigration along both the grain boundary and the slit surface. Electrically induced flux in the grain boundary Igb (+ toward the slit tip) and both electrically and curvature-induced fluxes on the slit surfaces are considered assuming 2Is〉Igb, where Is is the flux (+ away from the slit tip) on each of the parallel slit surfaces far removed from the tip. Steady-state solutions of the transport equations are classified according to the value of a parameter β=tan−1 (2Is/Igb) which, under reasonable assumptions, depends on material parameters only. For 5π/4≥β≥β2, unique steady-state solutions exist; for β2〉β〉β1, multiple steady-state solutions occur; below β1≥π/4, no steady-state solution is possible. Since β1〈π/2, Igb〉0 (flux exiting the grain boundary into the slit) for all cases in which no steady-state solution is possible. In the case of multiple solutions, those corresponding to smallest width (and hence largest velocity) are determined. For all steady-state solutions, slit width and tip velocity scale as E−1/20 and E3/20, respectively. Results also apply to the propagation of a slit within a grain or along a passivation layer. Generally, tip velocities can approach 1 nm/s (3.6 μm/h), thereby representing a likely failure mechanism in fine-line (near bamboo structure) interconnects. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Interface science 6 (1998), S. 197-203 
    ISSN: 1573-2746
    Keywords: grain boundary diffusion ; dislocation pipe diffusion ; diffusion in nanocrystals
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract A generalization of the Fisher model of the grain boundary diffusion is suggested, which takes into account the diffusion along short circuit diffusion paths (i.e., dislocations) in the bulk of crystalline grains. For the B-regime of the grain boundary diffusion, three different penetration modes have been found: at the short times the penetration depth of the element diffusing along the grain boundary is given by the Whipple solution of the Fisher model, but with the pipe diffusion coefficients along the dislocation cores instead of the volume diffusivities; at the intermediate times the penetration depth is a weak function of time, and at the large times the penetration depth again increases with time according to the Whipple solution, however, the rate of this increase is much smaller than in the initial period of time. The applications of the model for diffusion in nanomaterials are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    X-Ray Spectrometry 24 (1995), S. 13-18 
    ISSN: 0049-8246
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Physics
    Notes: A method for the determination of the mean size of submicron particles randomly distributed in a matrix by electron probe x-ray microanalysis (EPMA) is described. The method is based on an analysis of variance of the characteristic x-ray intensity from an element contained only in the particle. Analytical expressions relating this variance to the mean size of the particles were derived and the method was validated using test samples. The present technique can be used with a conventional x-ray microanalyser for the rapid determination of the mean size of submicron particles.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-07-18
    Print ISSN: 0022-2461
    Electronic ISSN: 1573-4803
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-03-01
    Print ISSN: 1359-6462
    Electronic ISSN: 1872-8456
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2003-05-01
    Print ISSN: 1359-6462
    Electronic ISSN: 1872-8456
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...