ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2023-06-07
    Description: This toolbox implements various tools for working with simple, non-marked, one dimensional point processes. The highlight of this toolbox is the new goodness-of-fit test developed for parametric models.
    Type: Software , NonPeerReviewed
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Defining a precise timeline for past eruptions from explosive volcanoes in continental arcs is imperative to forecast future hazards and mitigate volcanic disasters in these often densely populated regions. However, establishing reliable ages for Quaternary eruptions in the Central American Volcanic Arc has been challenging due to the common lack or alteration of suitable K-rich phases for 40Ar/39Ar geochronology, but also from their position in time beyond the reach of 14C dating. This especially holds for the active Amatitlán caldera in Guatemala, from which at least six explosive silicic eruptions have produced tephra blanketing neighboring regions that are today inhabited by millions of people. Zircon, a common datable accessory mineral in Amatitlán caldera magmas, is used here to retrieve eruption ages by applying the novel zircon double-dating method (ZDD) that integrates 238U–230Th disequilibrium dating and (U–Th)/He thermochronology. This approach yielded the first-ever radioisotopic ages of 24 ± 3 ka and 48 ± 6 ka (1σ), respectively, of two of Amatitlán caldera's most recent eruptions (J-tephra and E-tephra). Remarkably, both zircon crystallization and ZDD eruption ages for the older and voluminous T-tephra and L-tephra units significantly post-date existing plagioclase 40Ar/39Ar dates by ca. 26 and 70 kyr, respectively. The ZDD eruption age for T-tephra is 93 ± 4 ka, whereas zircon crystallization ages for L-tephra yield a maximum model eruption age of ca. 124 ka. The strong eruption age divergence between ZDD and plagioclase 40Ar/39Ar dating argues for the presence of inherited or xenocrystic plagioclase in Amatitlán caldera eruptive products. Statistical analysis based on the updated eruptive history suggests a recurrence interval of ca. 17 kyr, which is significantly shorter than previously estimated. The new age data, thus, suggest a more frequent eruptive activity of Amatitlán caldera than formerly thought and underscores the necessity to better understand the current underlying magmatic system and to constrain its past eruptive history more precisely.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...