ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4919
    Keywords: poly(ADP-ribose)polymerase ; poly(ADP-ribose) glycohydrolase ; DNA repair ; chromatin ; nucleosomal unfolding ; NAD+
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The enzymes poly(ADP-ribose)polymerase and poly(ADP-ribose) glycohydrolase may cooperate to drive a histone shuttle mechanism in chromatin. The mechanism is triggered by binding of the N-terminal zinc-finger domain of the polymerase to DNA strand breaks, which activates the catalytic activities residing in the C-terminal domain. The polymerase converts into a protein carrying multiple ADP-ribose polymers which displace histones from DNA by specifically targeting the histone tails responsible for DNA condensation. As a result, the domains surrounding DNA strand breaks become accessible to other proteins. Poly(ADP0ribose) glycohydrolase attacks ADP-ribose polymers in a specific order and thereby releases histones for reassociation with DNA. Increasing evidence from different model systems suggests that histone shuttling participates in DNA repairin vivo as a catalyst for nucleosomal unfolding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: poly(ADP-ribose) ; PARP ; nuclear matrix ; noncovalent interactions ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Recent evidence suggests that poly(ADP-ribose) may take part in DNA strand break signalling due to its ability to interact with and affect the function of specific target proteins. Using a poly(ADP-ribose) blot assay, we have found that several nuclear matrix proteins from human and murine cells bind ADP-ribose polymers with high affinity. The binding was observed regardless of the procedure used to isolate nuclear matrices, and it proved resistant to high salt concentrations. In murine lymphoma LY-cell cultures, the spontaneous appearance of radiosensitive LY-S sublines was associated with a loss of poly(ADP-ribose)-binding of several nuclear matrix proteins. Because of the importance of the nuclear matrix in DNA processing reactions, the targeting of matrix proteins could be an important aspect of DNA damage signalling via the poly ADP-ribosylation system. J. Cell. Biochem. 70:596-603. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-6822
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract We have determined the ability of UV254nm-irradiated murine lymphoma cells to adapt their NAD+ metabolism to the increased NAD+ consumption for the poly ADP-ribosylation of chromatin proteins. Two murine lymphoma sublines with differential UV-sensitivity and poly(ADP-ribose) turnover were used as a model system. The first subline, designated LY-R is UV254nm-sensitive and tumorigenic in DBA/2 mice. The second subline, LY-S is UV254nm-resistant and nontumorigenic. Following treatment of these cells with 2 mM benzamide, an inhibitor of the NAD+-utilizing enzyme poly(ADP-ribose) polymerase, NAD+ levels slowly increased up to about 160% of control levels after 3 hours. When benzamide was added to these cultures 20 min after UV254nm irradiation, a dramatic transient increase of NAD+ levels was observed within 4 min in LY-R cells and more moderately in LY-S cells. At later times after UV254nm irradiation, the NAD+ levels increased in both sublines reaching up to 200% of the concentrations prior to benzamide treatment. These results demonstrate an adaptative response of NAD+ metabolism to UV254nm irradiation. In parallel, we observed a differential repartitioning of ADP-ribosyl residues between the NAD+ and poly(ADP-ribose) pools of LY-R and LY-S cells that correlates with the differential UV sensitivity of these cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...