ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Keywords: Extreme climate events ; Tree response ; wood functional traits ; Ecophysiology ; Genetic plasticity ; Manipulation experiments ; mechanistic modeling ; forest management
    Description / Table of Contents: Trees are among the longest-living organisms. They are sensitive to extreme climatic events and document the effects of environmental changes in form of structural modifications of their tissues. These modifications represent an integrated signal of complex biological responses enforced by the environment. For example, temporal change in stem increment integrates multiple information of tree performance, and wood anatomical traits may be altered by climatic extremes or environmental stress. Recent developments in preparative tools and computational image analysis enable to quantify changes in wood anatomical features, like vessel density or vessel size. Thus, impacts on their functioning can be related to climatic forcing factors. Similarly, new developments in monitoring (cambial) phenology and mechanistic modelling are enlightening the interrelationships between environmental factors, wood formation and tree performance and mortality. Quantitative wood anatomy is a reliable indicator of drought occurrence during the growing season, and therefore has been studied intensively in recent years. The variability in wood anatomy not only alters the biological and hydraulic functioning of a tree, but may also influence the technological properties of wood, with substantial impacts in forestry. On a larger scale, alterations of sapwood and phloem area and their ratios to other functional traits provide measures to detect changes in a tree’s life functions, and increasing risk of drought-induced mortality with possible impacts on hydrological processes and species composition of plant communities. Genetic variability within and across populations is assumed to be crucial for species survival in an unpredictable future world. The magnitude of genetic variation and heritability of adaptive traits might define the ability to adapt to climate change. Is there a relation between genetic variability and resilience to climate change? Is it possible to link genetic expression and climate change to obtain deeper knowledge of functional genetics? To derive precise estimates of genetic determinism it is important to define adaptive traits in wood properties and on a whole-tree scale. Understanding the mechanisms ruling these processes is fundamental to assess the impact of extreme climate events on forest ecosystems, and to provide realistic scenarios of tree responses to changing climates. Wood is also a major carbon sink with a long-term residence, impacting the global carbon cycle. How well do we understand the link between wood growth dynamics, wood carbon allocation and the global carbon cycle? Papers contribution to this Research Topic will cover a wide range of ecosystems. However, special relevance will be given to Mediterranean-type areas. These involve coastal regions of four continents, making Mediterranean-type ecosystems extremely interesting for investigating the potential impacts of global change on growth and for studying responses of woody plants under extreme environmental conditions. For example, the ongoing trend towards warmer temperatures and reduced precipitation can increase the susceptibility to fire and pests. The EU-funded COST Action STREeSS (Studying Tree Responses to extreme Events: a SynthesiS) addresses such crucial tree biological and forest ecological issues by providing a collection of important methodological and scientific insights, about the current state of knowledge, and by opinions for future research needs.
    Pages: Online-Ressource (466 Seiten)
    ISBN: 9782889451920
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-01
    Description: Dead wood provides a huge terrestrial carbon stock and a habitat to wide-ranging organisms during its decay. Our brief review highlights that, in order to understand environmental change impacts on these functions, we need to quantify the contributions of different interacting biotic and abiotic drivers to wood decomposition. LOGLIFE is a new long-term ‘common-garden’ experiment to disentangle the effects of species’ wood traits and site-related environmental drivers on wood decomposition dynamics and its associated diversity of microbial and invertebrate communities. This experiment is firmly rooted in pioneering experiments under the directorship of Terry Callaghan at Abisko Research Station, Sweden. LOGLIFE features two contrasting forest sites in the Netherlands, each hosting a similar set of coarse logs and branches of 10 tree species. LOGLIFE welcomes other researchers to test further questions concerning coarse wood decay that will also help to optimise forest management in view of carbon sequestration and biodiversity conservation. ©2012 Royal Swedish Academy of Sciences
    Print ISSN: 0044-7447
    Electronic ISSN: 1654-7209
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer on behalf of Royal Swedish Academy of Sciences.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2021-05-19
    Description: As a key parameter in population dynamics, mortality rates are frequently estimated using mark–recapture data, which requires extensive, long‐term data sets. As a potential rapid alternative, we can measure variables correlated to age, allowing the compilation of population age distributions, from which mortality rates can be derived. However, most studies employing such techniques have ignored their inherent inaccuracy and have thereby failed to provide reliable mortality estimates. In this study, we present a general statistical model linking birth rate, mortality rate, and population age distributions. We next assessed the reliability and data needs (i.e., sample size) for estimating mortality rate of eight different aging techniques. The results revealed that for half of the aging techniques, correlations with age varied considerably, translating into highly variable accuracies when used to estimate mortality rate from age distributions. Telomere length is generally not sufficiently correlated to age to provide reliable mortality rate estimates. DNA methylation, signal‐joint T‐cell recombination excision circle (sjTREC), and racemization are generally more promising techniques to ultimately estimate mortality rate, if a sufficiently high sample size is available. Otolith ring counts, otolithometry, and age‐length keys in fish, and skeletochronology in reptiles, mammals, and amphibians, outperformed all other aging techniques and generated relatively accurate mortality rate estimation with a sample size that can be feasibly obtained. Provided the method chosen is minimizing and estimating the error in age estimation, it is possible to accurately estimate mortality rates from age distributions. The method therewith has the potential to estimate a critical, population dynamic parameter to inform conservation efforts within a limited time frame as opposed to mark–recapture analyses.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-11-27
    Description: Gravity waves (GWs) are generated at all altitudes in the atmosphere, but sources above the lower stratosphere are rarely considered by parameterizations employed in general circulation models. This study assesses the potential impact on the thermosphere produced by small‐scale waves originating at different heights. Within the proposed numerical framework, GW sources are represented by wave momentum forcing, whose values are expressed relative to the forcing required to obtain typical wave spectra around the tropopause. The relative importance of tropospheric and extra‐tropospheric sources and the response in the thermosphere are studied in a series of sensitivity experiments. They demonstrate that the accumulation of wave momentum steeply drops with height as a consequence of decreasing density, even when the forcing is maintained at a uniform level throughout the middle atmosphere. When a broad spectrum is forced at twice the tropospheric rate, the thermospheric drag is increased by only a factor of two, and that increase is produced by waves that were forced in the lower stratosphere. With increasing altitude, vertically localized sources contribute progressively less. For example, for GWs excited near the mesopause to produce an impact comparable with that due to waves propagating from below, the forcing must be orders of magnitude stronger than in the troposphere. The estimated forcing of the so‐called secondary harmonics by breaking primary waves is much weaker, such that the systematic dynamical effect of secondary waves in the thermosphere is negligible compared to that of the primary GWs generated in the troposphere.
    Description: Plain Language Summary: Multiple observations demonstrate that gravity waves (GWs) are generated at all atmospheric levels, however numerical general circulation models employing parameterizations that account for wave sources only in the troposphere are able to reproduce the state and dynamics of the middle and upper atmosphere reasonably well. Assessing the role of GWs generated above the troposphere is extremely challenging, because such waves are difficult to separate from those of tropospheric origin in observations. The mechanisms of wave generation in the middle atmosphere are very complex and not fully understood. We developed a numerical framework, in which the strength of the extra‐tropospheric sources is represented by multiples of those in the troposphere. In the series of sensitivity tests, we demonstrate that the contribution of sources to the total wave momentum drops with height following the density decrease, and that the tropospheric sources capture the major part of the total momentum and of the associated GW drag in the thermosphere. One of the conclusions of this study is that the impact in the thermosphere of secondary waves, which are believed to be excited near the mesopause, is negligible compared to that of primary waves propagating from the troposphere.
    Description: Key Points: A framework for assessing impacts of gravity waves generated by sources distributed over all heights in the middle atmosphere is developed. The thermospheric response to sources above the tropopause is primarily produced by waves generated in the lower. stratosphere Localized sources produce negligible thermospheric drag unless the forcing is orders of magnitude stronger than in the troposphere.
    Description: Earth Sciences Division http://dx.doi.org/10.13039/100014573
    Description: https://kauai.ccmc.gsfc.nasa.gov/instantrun/hwm
    Description: https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php
    Keywords: ddc:551.5 ; gravity waves ; wave sources ; thermosphere ; secondary waves ; middle atmosphere
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-08-21
    Keywords: Biological sample; BIOS; Breoyane_Is; Kongsfjorden, Spitsbergen, Arctic; Mass spectrometer Finnigan Delta-S; Sample amount; Sample type; Species; δ13C; δ15N; δ15N, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 21 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-08-21
    Keywords: Biological sample; BIOS; Breoyane_Is; Kongsfjorden, Spitsbergen, Arctic; Mass spectrometer Finnigan Delta-S; Percentage; Sample amount; Sample type; δ13C, organic matter; δ13C, standard deviation; δ15N; δ15N, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 33 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-08-21
    Keywords: Biological sample; BIOS; Breoyane_Is; Calculated; Comment; Description; Discrimination factor, δ13C; Discrimination factor, δ15N; Kongsfjorden, Spitsbergen, Arctic; Species; Standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 38 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hahn, Steffen; Loonen, Maarten J J E; Klaassen, Marcel (2011): The reliance on distant resources for egg formation in high Arctic breeding barnacle geese Branta leucopsis. Journal of Avian Biology, 42(2), 159-168, https://doi.org/10.1111/j.1600-048X.2010.05189.x
    Publication Date: 2023-12-13
    Description: Breeding in the high Arctic is time constrained and animals should therefore start with their annual reproduction as early as possible. To allow for such early reproduction in migratory birds, females arrive at the breeding grounds either with body stores or they try to rapidly develop their eggs after arrival using local resources. Svalbard breeding barnacle geese Branta leucopsis have to fly non-stop for about 1100 km from their last continental staging site to the archipelago making the transport of body stores costly. However, environmental conditions at the breeding grounds are highly unpredictable favouring residual body stores allowing for egg production after arrival on the breeding grounds. We estimated the reliance on southern continental resources, i.e. body stores for egg formation, in barnacle geese using stable isotope ratios in the geese's forage along the flyway and in their eggs. Females adopted mixed breeding strategies by using southern resources as well as local resources to varying extents for egg formation. Southern capital in lipid-free yolk averaged 41% (range: 23-65%), early laid eggs containing more southern capital than eggs laid late in the season. Yolk lipids and albumen did not vary over time and averaged a southern capital proportion of 54% (range: 32-73%) and 47% (range: 25-88%), respectively. Our findings indicate that female geese vary the use of southern resources when synthesizing their eggs and this allocation also varies among egg tissues. Their mixed and flexible use of distant and local resources potentially allows for adaptive adjustments to environmental conditions encountered at the archipelago just before breeding.
    Keywords: Biological sample; BIOS; Breoyane_Is; International Polar Year (2007-2008); IPY; Kongsfjorden, Spitsbergen, Arctic
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-05
    Description: Trees are among the longest-living organisms. They are sensitive to extreme climatic events and document the effects of environmental changes in form of structural modifications of their tissues. These modifications represent an integrated signal of complex biological responses enforced by the environment. For example, temporal change in stem increment integrates multiple information of tree performance, and wood anatomical traits may be altered by climatic extremes or environmental stress. Recent developments in preparative tools and computational image analysis enable to quantify changes in wood anatomical features, like vessel density or vessel size. Thus, impacts on their functioning can be related to climatic forcing factors. Similarly, new developments in monitoring (cambial) phenology and mechanistic modelling are enlightening the interrelationships between environmental factors, wood formation and tree performance and mortality. Quantitative wood anatomy is a reliable indicator of drought occurrence during the growing season, and therefore has been studied intensively in recent years. The variability in wood anatomy not only alters the biological and hydraulic functioning of a tree, but may also influence the technological properties of wood, with substantial impacts in forestry. On a larger scale, alterations of sapwood and phloem area and their ratios to other functional traits provide measures to detect changes in a tree’s life functions, and increasing risk of drought-induced mortality with possible impacts on hydrological processes and species composition of plant communities. Genetic variability within and across populations is assumed to be crucial for species survival in an unpredictable future world. The magnitude of genetic variation and heritability of adaptive traits might define the ability to adapt to climate change. Is there a relation between genetic variability and resilience to climate change? Is it possible to link genetic expression and climate change to obtain deeper knowledge of functional genetics? To derive precise estimates of genetic determinism it is important to define adaptive traits in wood properties and on a whole-tree scale. Understanding the mechanisms ruling these processes is fundamental to assess the impact of extreme climate events on forest ecosystems, and to provide realistic scenarios of tree responses to changing climates. Wood is also a major carbon sink with a long-term residence, impacting the global carbon cycle. How well do we understand the link between wood growth dynamics, wood carbon allocation and the global carbon cycle? Papers contribution to this Research Topic will cover a wide range of ecosystems. However, special relevance will be given to Mediterranean-type areas. These involve coastal regions of four continents, making Mediterranean-type ecosystems extremely interesting for investigating the potential impacts of global change on growth and for studying responses of woody plants under extreme environmental conditions. For example, the ongoing trend towards warmer temperatures and reduced precipitation can increase the susceptibility to fire and pests. The EU-funded COST Action STREeSS (Studying Tree Responses to extreme Events: a SynthesiS) addresses such crucial tree biological and forest ecological issues by providing a collection of important methodological and scientific insights, about the current state of knowledge, and by opinions for future research needs.
    Keywords: QK1-989 ; Q1-390 ; Tree response ; Genetic plasticity ; mechanistic modeling ; wood functional traits ; Extreme climate events ; Ecophysiology ; Manipulation experiments ; forest management ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...