ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Black, Benjamin A; Neely, Ryan R; Lamarque, Jean-François; Elkins-Tanton, Linda; Kiehl, Jeffrey T; Shields, Christine A; Mills, Michael; Bardeen, Charles (2018): Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing. Nature Geoscience, 11(12), 949-954, https://doi.org/10.1038/s41561-018-0261-y
    Publication Date: 2023-09-09
    Description: Siberian Traps flood basalt magmatism coincided with the end-Permian mass extinction approximately 252 million years ago. Proposed links between magmatism and ecological catastrophe include global warming, global cooling, ozone depletion, and changes in ocean chemistry. However, the critical combinations of environmental changes responsible for global mass extinction are undetermined. In particular, the combined and competing climate effects of sulfur and carbon outgassing remain to be quantified. Here we present model outputs from global climate model simulations of flood basalt outgassing that account for sulfur chemistry and aerosol microphysics with coupled atmosphere and ocean circulation. We consider the effects of sulfur and carbon in isolation and in tandem. We find that coupling with the ocean strongly influences the climate response to flood basalt-scale outgassing. We suggest that sulfur and carbon emissions from the Siberian Traps combined to generate systemic swings in temperature, ocean circulation, and hydrology within a longer-term trend towards a greenhouse world in the early Triassic. Read README.PDF first for a description of the remaining files.
    Type: Dataset
    Format: application/zip, 838.3 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 355 (1992), S. 773-773 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] MAN-MADE chlorofluorocarbons (CFCs) are important not only for the part they play in ozone destruction. They are also greenhouse gases, letting through short-wave solar radiation, but trapping long-wave radiation from the Earth's surface and lower atmosphere. So it may be with a ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 11 (1995), S. 377-397 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The dependence on horizontal resolution of the climate simulated by the National Center for Atmospheric Research Community Climate Model (CCM2) is explored. Simulations employing R15, T21, T31, T42, T63, and T106 horizontal spectral truncations are compared. Parameters associated with the diagnostic cloud scheme are modified for each resolution to provide similar global average cloud radiative forcing at each resolution. Overall, as with earlier studies, there are large differences between the low resolution R15 and T21 simulations and the medium resolution T42 simulation. Many climate statistics show a monotonic signal with increasing resolution, with the largest variation occurring from low to medium resolution. Although the monotonic signal is often from the low resolution simulations toward atmospheric analyses, in some cases it continues beyond the analyses at the highest resolution. Where convergence occurs, it is not always to the atmospheric analyses, and the highest resolution simulations are not the best by all measures. Although many climate statistics converge, the processes that maintain the climate do not, especially when considered on a regional basis. The implication is that the finer scales are required to capture the nonlinear processes that force the medium scales. Overall, it appears that, at a minimum, T42 resolution is required, but higher resolution would be better. Applications at T42 should take into consideration how model errors indicated by these resolution signals might affect any findings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 11 (1995), S. 377-397 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. The dependence on horizontal resolution of the climate simulated by the National Center for Atmospheric Research Community Climate Model (CCM2) is explored. Simulations employing R15, T21, T31, T42, T63, and T106 horizontal spectral truncations are compared. Parameters associated with the diagnostic cloud scheme are modified for each resolution to provide similar global average cloud radiative forcing at each resolution. Overall, as with earlier studies, there are large differences between the low resolution R15 and T21 simulations and the medium resolution T42 simulation. Many climate statistics show a monotonic signal with increasing resolution, with the largest variation occurring from low to medium resolution. Although the monotonic signal is often from the low resolution simulations toward atmospheric analyses, in some cases it continues beyond the analyses at the highest resolution. Where convergence occurs, it is not always to the atmospheric analyses, and the highest resolution simulations are not the best by all measures. Although many climate statistics converge, the processes that maintain the climate do not, especially when considered on a regional basis. The implication is that the finer scales are required to capture the nonlinear processes that force the medium scales. Overall, it appears that, at a minimum, T42 resolution is required, but higher resolution would be better. Applications at T42 should take into consideration how model errors indicated by these resolution signals might affect any findings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Climatic change 5 (1983), S. 421-422 
    ISSN: 1573-1480
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Climatic change 5 (1983), S. 421-422 
    ISSN: 1573-1480
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Climatic change 6 (1984), S. 395-396 
    ISSN: 1573-1480
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 19 (2006): 2122–2143, doi:10.1175/JCLI3761.1.
    Description: The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land–atmosphere fluxes, ocean mixed layer processes, and sea ice dynamics. There are significant improvements in the sea ice thickness, polar radiation budgets, tropical sea surface temperatures, and cloud radiative effects. CCSM3 can produce stable climate simulations of millennial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean–atmosphere fluxes in coastal regions west of continents, the spectrum of ENSO variability, the spatial distribution of precipitation in the tropical oceans, and continental precipitation and surface air temperatures. Work is under way to extend CCSM to a more accurate and comprehensive model of the earth's climate system.
    Description: We would like to acknowledge the substantial contributions to and support for the CCSM project from the National Science Foundation (NSF), the Department of Energy (DOE), the National Oceanic and Atmospheric Administration, and the National Aeronautics and Space Administration.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1994-11-01
    Print ISSN: 0031-9228
    Electronic ISSN: 1945-0699
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1996-07-01
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley on behalf of Royal Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...