ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Vibration–rotation–tunneling (VRT) spectroscopy has been extended to the 4 THz spectral region through the observation of a second intermolecular vibration of (D2O)4. Analysis of the precisely measured perpendicular transition confirms the previously reported cyclic homodromic structure and reveals a dramatically increased (30×) hydrogen bond rearrangement rate in the excited state. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 3988-3993 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We report the observation of a new c-type band of (D2O)3 at 583.215 92(37) GHz, which we assign to the k=±20←±10 torsional hot-band. The new data includes the first observation of K=0 states for the k=+10 and k=−20 levels and effects a correct assignment of these states. A new perturbation was observed for the K=2 states of the k=+20←−10 subband splitting each transition into two equally spaced equal intensity doublets. Analysis of the band and inclusion into a global fit of all torsional bands produces negligible differences with previous analyses, and confirms the validity of the Hamiltonian developed to treat the coupling between torsional motion and overall rotation. The 583.2 GHz band completes the precise characterization of all (D2O)3 vibrational levels below 100 cm−1. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 3994-4004 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We report the first direct observation of the hydrogen-bond stretching vibration for a water cluster. A perpendicular band of (D2O)3 was measured by terahertz laser vibration–rotation–tunneling spectroscopy at 142.8 cm−1 in the "translational band" region of the liquid corresponding to the hindered translational motions of water molecules. We have tentatively assigned the spectrum to transitions from the vibrational ground state to the degenerate hydrogen-bond stretch or a combination or mixed state of the degenerate stretch and a torsional vibration. Comparison with theoretical results shows that calculated frequencies are much too high, presumably because they do not include coupling between the torsional and stretching vibrations. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 4005-4015 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We report the first high resolution spectrum of a librational vibration for a water cluster. Four parallel bands of (H2O)3 were measured between 510 and 525 cm−1 using diode laser vibration–rotation–tunneling (VRT) spectroscopy. The bands lie in the "librational band" region of liquid water and are assigned to the nondegenerate out of plane librational vibration. The observation of at least three distinct bands within 8 cm−1 originating in the vibrational ground state is explained by a dramatically increased splitting of the rovibrational levels relative to the ground state by bifurcation tunneling and is indicative of a greatly reduced barrier height in the excited state. This tunneling motion is of special significance, as it is the lowest energy pathway for breaking and reforming of hydrogen bonds, a salient aspect of liquid water dynamics. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Glyoxal (CHOCHO) is produced in the atmosphere by the oxidation of volatile organic compounds(VOCs). Like formaldehyde (HCHO), another VOC oxidation product, it is measurable from space by solar backscatter. Isoprene emitted by vegetation is the dominant source of CHOCHO and HCHO in most of the world. We use aircraft observations of CHOCHO and HCHO from the Southeast Nexus (SENEX) campaign over the southeast US in summer 2013 to better understand the CHOCHO time-dependent yield from isoprene oxidation, its dependence on nitrogen oxides (NO (sub x) triple bonded to NO plus NO2), the behavior of the CHOCHO-HCHO relationship, the quality of Ozone Monitoring Instrument (OMI) CHOCHO satellite observations, and the implications for using CHOCHO observations from space as constraints on isoprene emissions. We simulate the SENEX and OMI observations with the Goddard Earth Observing System chemical transport model (GEOSChem) featuring a new chemical mechanism for CHOCHO formation from isoprene. The mechanism includes prompt CHOCHO formation under low-NO (sub x) conditions following the isomerization of the isoprene peroxy radical (ISOPO2).The SENEX observations provide support for this prompt CHOCHO formation pathway, and are generally consistent with the GEOS-Chem mechanism. Boundary layer CHOCHO and HCHO are strongly correlated in the observations and the model, with some departure under low-NO (sub x) conditions due to prompt CHOCHO formation. SENEX vertical profiles indicate a free-tropospheric CHOCHO background that is absent from the model. The OMI CHOCHO data provide some support for this free-tropospheric background and show southeast US enhancements consistent with the isoprene source but a factor of 2 too low. Part of this OMI bias is due to excessive surface reflectivities assumed in the retrieval. The OMI CHOCHO and HCHO seasonal data over the southeast US are tightly correlated and provide redundant proxies of isoprene emissions. Higher temporal resolution in future geostationary satellite observations may enable detection of the prompt CHOCHO production under low-NO (sub x) conditions apparent in the SENEX data.
    Keywords: Environment Pollution; Geophysics
    Type: GSFC-E-DAA-TN47279 , Atmospheric Chemistry and Physics (e-ISSN 1680-7324); 17; 14; 8725-8738
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Isoprene oxidation schemes vary greatly among gas-phase chemical mechanisms, with potentially significant ramifications for air quality modeling and interpretation of satellite observations in biogenic-rich regions. In this study, in situ observations from the 2013 SENEX mission are combined with a constrained O-D photochemical box model to evaluate isoprene chemistry among five commonly used gas-phase chemical mechanisms: CBO5, CB6r2, MCMv3.2, MCMv3.3.1, and a recent version of GEOS-Chem. Mechanisms are evaluated and inter-compared with respect to formaldehyde (HCHO), a high-yield product of isoprene oxidation. Though underestimated by all considered mechanisms, observed HCHO mixing ratios are best reproduced by MCMv3.3.1 (normalized mean bias = -15%), followed by GEOS-Chem (-17%), MCMv3.2 (-25%), CB6r2 (-32%) and CB05 (-33%). Inter-comparison of HCHO production rates reveals that major restructuring of the isoprene oxidation scheme in the Carbon Bond mechanism increases HCHO production by only approx. 5% in CB6r2 relative to CBO5, while further refinement of the complex isoprene scheme in the Master Chemical Mechanism increases HCHO production by approx. 16% in MCMv3.3.1 relative to MCMv3.2. The GEOS-Chem mechanism provides a good approximation of the explicit isoprene chemistry in MCMv3.3.1 and generally reproduces the magnitude and source distribution of HCHO production rates. We analytically derive improvements to the isoprene scheme in CB6r2 and incorporate these changes into a new mechanism called CB6r2-UMD, which is designed to preserve computational efficiency. The CB6r2-UMD mechanism mimics production of HCHO in MCMv3.3.1 and demonstrates good agreement with observed mixing ratios from SENEX (-14%). Improved simulation of HCHO also impacts modeled ozone: at approx. 0.3 ppb NO, the ozone production rate increases approx. 3% between CB6r2 and CB6r2-UMD, and rises another approx. 4% when HCHO is constrained to match observations.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN47241 , Atmospheric Environment (ISSN 1352-2310); 164; 325-336
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: VOCs (Volatile Organic Compounds) related to oil and gas extraction operations in the United States were measured by H3O (sup plus) chemical ionization time-of-flight mass spectrometry (H3O (sup plus) ToFCIMS/PTR-ToF-MS (Time of Flight Chemical Ionization Mass Spectrometry/Proton Transfer Reaction-Time of Flight-Mass Spectroscopy) from aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign in March-April 2015. This work presents an overview of major VOC species measured in nine oil- and gas-producing regions, and a more detailed analysis of H3O (sup plus) ToF-CIMS measurements in the Permian Basin within Texas and New Mexico. Mass spectra are dominated by small photochemically produced oxygenates and compounds typically found in crude oil: aromatics, cyclic alkanes, and alkanes. Mixing ratios of aromatics were frequently as high as those measured downwind of large urban areas. In the Permian, the H3O (sup plus) ToF-CIMS measured a number of underexplored or previously unreported species, including aromatic and cycloalkane oxidation products, nitrogen heterocycles including pyrrole (C4H5N) and pyrroline (C4H7N), H2S, and a diamondoid (adamantane) or unusual monoterpene. We additionally assess the specificity of a number of ion masses resulting from H3O (sup plus) ion chemistry previously reported in the literature, including several new or alternate interpretations.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN47232 , Atmospheric Measurement Techniques (e-ISSN 1867-8548); 10; 8; 2941-2968
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and Master Chemical Mechanism (MCM) v3.3.1). These mechanisms are then implemented into a 3-D global chemistry-climate model. Comparison with field observations shows that the average vertical profile of glyoxal is best reproduced by AM3ST with an effective reactive uptake coefficient gamma(sub glyx) of 2 x 10(exp -3) and AM3B without heterogeneous loss of glyoxal. The two mechanisms lead to 0-0.8micrograms m(exp -3) secondary organic aerosol (SOA) from glyoxal in the boundary layer of the Southeast U.S. in summer. We consider this to be the lower limit for the contribution of glyoxal to SOA, as other sources of glyoxal other than isoprene are not included in our model. In addition, we find that AM3B shows better agreement on both formaldehyde and the correlation between glyoxal and formaldehyde (RGF[GLYX]/[HCHO]), resulting from the suppression of delta-isoprene peroxy radicals (delta-ISOPO2). We also find that MCM v3.3.1 may underestimate glyoxal production from isoprene oxidation, in part due to an underestimated yield from the reaction of isoprene epoxydiol (IEPOX) peroxy radicals with HO2. Our work highlights that the gas-phase production of glyoxal represents a large uncertainty in quantifying its contribution to SOA.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN41635 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 121; 16; 9849-9861
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-09
    Description: We report enhancements of glyoxal relative to carbon monoxide and formaldehyde from biomass burning plumes intercepted from the NOAA WP-3D aircraft during the 2013 Southeast Nexus and 2015 Shale Oil and Natural Gas Nexus field campaigns. The intercepted biomass burning plumes were from small agricultural fires. Since the plume ages were not known, these values are normalized excess mixing ratios, instead of the more common emission ratio, which is used only for fresh emissions. Glyoxal was measured using broadband cavity enhanced spectroscopy, which provides a sensitive and highly selective measurement of glyoxal. Emissions of other species such as methane, formaldehyde, and nitrous acid agreed with previous laboratory and field measurements, but the glyoxal emissions relative to CO were on average a factor of 4 lower than previously reported. Several glyoxal loss processes such as aerosol uptake were examined to determine if they could affect the observed glyoxal concentrations, but they were insufficient to explain the lower measured values of glyoxal relative to other biomass burning trace gases, indicating that glyoxal emissions from biomass burning may be significantly overestimated.
    Keywords: Environment Pollution
    Type: NF1676L-27262 , GSFC-E-DAA-TN47723 , Environmental Science and Technology (ISSN 0013-936X) (e-ISSN 1520-5851); 51; 20; 11761-11770
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-11
    Description: Hydroxymethyl hydroperoxide (HMHP), formed in the reaction of the C1 Criegee intermediate with water, is among the most abundant organic peroxides in the atmosphere. Although reaction with OH is thought to represent one of the most important atmospheric removal processes for HMHP, this reaction has been largely unstudied in the laboratory. Here, we present measurements of the kinetics and products formed in the reaction of HMHP with OH. HMHP was oxidized by OH in an environmental chamber; the decay of the hydroperoxide and the formation of formic acid and formaldehyde were monitored over time using CF3O- chemical ionization mass spectrometry (CIMS) and laser induced fluorescence (LIF). The loss of HMHP by reaction with OH is measured relative to the loss of 1,2-butanediol [k1;2-butanediol+OH = (27:0 5:6) 10- exp12 cm3 molecule-1s-1]. We find that HMHP reacts with OH at 295 K with a rate coefficient of (7.1 1.5) 10-12 cm3 molecule-1s-1, with the formic acid to formaldehyde yield in a ratio of 0:880:21 and independent of NO concentration (31010 1.51013 molecule cm-3). We suggest that, exclusively, abstraction of the methyl hydrogen of HMHP results in formic acid while abstraction of the hydroperoxy hydrogen results in formaldehyde. We further evaluate the relative importance of HMHP sinks and use global simulations from GEOS-Chem to estimate that HMHP oxidation by OH contributes 1.7 Tg yr-1 (1-3%) of global annual formic acid production.
    Keywords: Inorganic, Organic and Physical Chemistry; Geosciences (General)
    Type: GSFC-E-DAA-TN68989 , Journal of Physical Chemistry A (ISSN 1089-5639) (e-ISSN 1520-5215); 122; 30; 6292-6302
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...