ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of engineering mathematics 17 (1983), S. 329-343 
    ISSN: 1573-2703
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Technology
    Notes: Summary solutions of the biharmonic equation governing steady two-dimensional viscous flow of an incompressible Newtonian fluid are obtained by employing a direct biharmonic boundary integral equation (BBIE) method in which Green's theorem is used to reformulate the differential equation as a pair of coupled integral equations which are applied only on the boundary of the solution domain. An iterative modification of the classical BBIE is presented which is able to solve a large class of (nonlinear) viscous free surface flows for a wide range of surface tensions. The method requires a knowledge of the asymptotic behaviour of the free surface profile in the limiting case of infinite surface tension but this can usually be obtained from a perturbation analysis. Unlike space discretisation techniques such as finite difference or finite element, the BBIE evaluates only boundary information on each iteration. Once the solution is evaluated on the boundary the solution at interior points can easily be obtained.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1619-6937
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Summary A novel boundary integral formulation is presented for the direct solution of the classical problem of slow flow past a two-dimensional cylinder of arbitrary cross section in an unbounded viscous medium, the equations of motion having first been linearised by the Oseen approximation. It is shown how the governing partial differential equations of motion, together with the no-slip boundary conditions on the cylinder, may be reformulated as a pair of coupled integral equations of the second kind, which may be manipulated further to yield the lift and drag coefficients explicitly, as well as flow characteristics anywhere in the flowfield. The present formulation requires a non-iterative numerical solution procedure which is applicable to low Reynolds number flows. The method is not restricted in its ability to deal with complicated cylinder geometries, as the discretisation of only the cylinder surface is required. Results of the present method are shown to be in good agreement with those of previous analytical and numerical investigations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Communications in Applied Numerical Methods 2 (1986), S. 189-193 
    ISSN: 0748-8025
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A quantative comparison between the boundary integral equation (BIE) method and the finite difference (FD) method is presented in which each technique is applied to an elliptic boundary-value problem (BVP) containing a boundary singularity. Two types of singularity have previously been analysed theoretically, namely those due to a discontinuous boundary potential, which we shall refer to as S1, and those due to a sudden change from the specification of boundary potential flux, an S2 singularity. In this paper the analysis is presented for a third type of boundary singularity, namely an S3 singularity: that arising from a discontinuous boundary flux. Such a condition is frequently encountered in the field of heat transfer where, for example, a system or pipe has a change of lagging material.In general, it is found that the BIE method is superior, with regards to the computational time required to achieve a certain degree of accuracy, over standard FD methods even when there is a boundary singularity. Further, the BIE method determines the solution near the singularity much more accurately than the FD method. The FD method does, however, have advantages for a very restrictive class of problems; for example, when the boundary conditions are of the Dirichlet type and the boundary geometry is rectangular. In this case an optimum relaxation parameter can easily be obtained. A soon as Neumann conditions are prescribed, the BIE is far more efficient than the FD, whatever the boundary geometry.It is concluded that, for fast, accurate solutions of general Laplacian boundary-value problems, the BIE is appreciably superior to the FD and this is even more pronounced when there is a boundary singularity.
    Additional Material: 3 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1987-09-01
    Print ISSN: 0001-5970
    Electronic ISSN: 1619-6937
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-09-01
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1991-10-01
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-08-22
    Description: New mechanisms are discovered regarding the effects of inertia in the transient Moffatt-Pukhnachov problem (J. Méc., vol. 187, 1977, pp. 651-673) on the evolution of the free surface of a viscous film coating the exterior of a rotating horizontal cylinder. Assuming two-dimensional evolution of the film thickness (i.e. neglecting variation in the axial direction), a multiple-timescale procedure is used to obtain explicitly parameterized high-order asymptotic approximations of solutions of the spatio-temporal evolution equation. Novel, hitherto-unexplained transitions from stability to instability are observed as inertia is increased. In particular, a critical Reynolds number Rec is predicted at which occurs a supercritical pitchfork bifurcation in wave amplitude that is fully explained by the new asymptotic theory. For Re〈Rec, free-surface profiles converge algebraically-cum-exponentially to a steady state and, for Re 〉 Rec, stable temporally periodic solutions with leading-order amplitudes proportional to .Re-Rec/1/2 are found, i.e. in the regime in which previous related literature predicts exponentially divergent instability. For ReDRec, stable solutions are found that decay algebraically to a steady state. A model solution is proposed that not only captures qualitatively the interaction between fundamental and higher-order wave modes but also offers an explanation for the formation of the lobes observed in Moffatt's original experiments. All asymptotic theory is convincingly corroborated by numerical integrations that are spectrally accurate in space and eighth/ninth-order accurate in time. © 2014 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...