ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Stevens, B., Bony, S., Farrell, D., Ament, F., Blyth, A., Fairall, C., Karstensen, J., Quinn, P. K., Speich, S., Acquistapace, C., Aemisegger, F., Albright, A. L., Bellenger, H., Bodenschatz, E., Caesar, K.-A., Chewitt-Lucas, R., de Boer, G., Delanoë, J., Denby, L., Ewald, F., Fildier, B., Forde, M., George, G., Gross, S., Hagen, M., Hausold, A., Heywood, K. J., Hirsch, L., Jacob, M., Jansen, F., Kinne, S., Klocke, D., Kölling, T., Konow, H., Lothon, M., Mohr, W., Naumann, A. K., Nuijens, L., Olivier, L., Pincus, R., Pöhlker, M., Reverdin, G., Roberts, G., Schnitt, S., Schulz, H., Siebesma, A. P., Stephan, C. C., Sullivan, P., Touzé-Peiffer, L., Vial, J., Vogel, R., Zuidema, P., Alexander, N., Alves, L., Arixi, S., Asmath, H., Bagheri, G., Baier, K., Bailey, A., Baranowski, D., Baron, A., Barrau, S., Barrett, P. A., Batier, F., Behrendt, A., Bendinger, A., Beucher, F., Bigorre, S., Blades, E., Blossey, P., Bock, O., Böing, S., Bosser, P., Bourras, D., Bouruet-Aubertot, P., Bower, K., Branellec, P., Branger, H., Brennek, M., Brewer, A., Brilouet , P.-E., Brügmann, B., Buehler, S. A., Burke, E., Burton, R., Calmer, R., Canonici, J.-C., Carton, X., Cato Jr., G., Charles, J. A., Chazette, P., Chen, Y., Chilinski, M. T., Choularton, T., Chuang, P., Clarke, S., Coe, H., Cornet, C., Coutris, P., Couvreux, F., Crewell, S., Cronin, T., Cui, Z., Cuypers, Y., Daley, A., Damerell, G. M., Dauhut, T., Deneke, H., Desbios, J.-P., Dörner, S., Donner, S., Douet, V., Drushka, K., Dütsch, M., Ehrlich, A., Emanuel, K., Emmanouilidis, A., Etienne, J.-C., Etienne-Leblanc, S., Faure, G., Feingold, G., Ferrero, L., Fix, A., Flamant, C., Flatau, P. J., Foltz, G. R., Forster, L., Furtuna, I., Gadian, A., Galewsky, J., Gallagher, M., Gallimore, P., Gaston, C., Gentemann, C., Geyskens, N., Giez, A., Gollop, J., Gouirand, I., Gourbeyre, C., de Graaf, D., de Groot, G. E., Grosz, R., Güttler, J., Gutleben, M., Hall, K., Harris, G., Helfer, K. C., Henze, D., Herbert, C., Holanda, B., Ibanez-Landeta, A., Intrieri, J., Iyer, S., Julien, F., Kalesse, H., Kazil, J., Kellman, A., Kidane, A. T., Kirchner, U., Klingebiel, M., Körner, M., Kremper, L. A., Kretzschmar, J., Krüger, O., Kumala, W., Kurz, A., L'Hégaret, P., Labaste, M., Lachlan-Cope, T., Laing, A., Landschützer, P., Lang, T., Lange, D., Lange, I., Laplace, C., Lavik, G., Laxenaire, R., Le Bihan, C., Leandro, M., Lefevre, N., Lena, M., Lenschow, D., Li, Q., Lloyd, G., Los, S., Losi, N., Lovell, O., Luneau, C., Makuch, P., Malinowski, S., Manta, G., Marinou, E., Marsden, N., Masson, S., Maury, N., Mayer, B., Mayers-Als, M., Mazel, C., McGeary, W., McWilliams, J. C., Mech, M., Mehlmann, M., Meroni, A. N., Mieslinger, T., Minikin, A., Minnett, P., Möller, G., Morfa Avalos, Y., Muller, C., Musat, I., Napoli, A., Neuberger, A., Noisel, C., Noone, D., Nordsiek, F., Nowak, J. L., Oswald, L., Parker, D. J., Peck, C., Person, R., Philippi, M., Plueddemann, A., Pöhlker, C., Pörtge, V., Pöschl, U., Pologne, L., Posyniak, M., Prange, M., Quiñones Meléndez, E., Radtke, J., Ramage, K., Reimann, J., Renault, L., Reus, K., Reyes, A., Ribbe, J., Ringel, M., Ritschel, M., Rocha, C. B., Rochetin, N., Röttenbacher, J., Rollo, C., Royer, H., Sadoulet, P., Saffin, L., Sandiford, S., Sandu, I., Schäfer, M., Schemann, V., Schirmacher, I., Schlenczek, O., Schmidt, J., Schröder, M., Schwarzenboeck, A., Sealy, A., Senff, C. J., Serikov, I., Shohan, S., Siddle, E., Smirnov, A., Späth, F., Spooner, B., Stolla, M. K., Szkółka, W., de Szoeke, S. P., Tarot, S., Tetoni, E., Thompson, E., Thomson, J., Tomassini, L., Totems, J., Ubele, A. A., Villiger, L., von Arx, J., Wagner, T., Walther, A., Webber, B., Wendisch, M., Whitehall, S., Wiltshire, A., Wing, A. A., Wirth, M., Wiskandt, J., Wolf, K., Worbes, L., Wright, E., Wulfmeyer, V., Young, S., Zhang, C., Zhang, D., Ziemen, F., Zinner, T., and Zöger, M.: EUREC4A. Earth System Science Data, 13(8), (2021): 4067–4119, https://doi.org/10.5194/essd-13-4067-2021.
    Description: The science guiding the EUREC4A campaign and its measurements is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC4A explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement.
    Description: This research has been supported by the people and government of Barbados; the Max Planck Society and its supporting members; the German Research Foundation (DFG) and the German Federal Ministry of Education and Research (grant nos. GPF18-1_69 and GPF18-2_50); the European Research Council (ERC) advanced grant EUREC4A (grant agreement no. 694768) under the European Union’s Horizon 2020 research and innovation program (H2020), with additional support from CNES (the French National Centre for Space Studies) through the EECLAT proposal, Météo-France, the CONSTRAIN H2020 project (grant agreement no. 820829), and the French AERIS Research Infrastructure; the Natural Environment Research Council (NE/S015868/1, NE/S015752/1, and NE/S015779/1); ERC under the European Union’s H2020 program (COMPASS, advanced grant agreement no. 74110); the French national program LEFE INSU, by IFREMER, the French research fleet, CNES, the French research infrastructures AERIS and ODATIS, IPSL, the Chaire Chanel program of the Geosciences Department at ENS, and the European Union's Horizon 2020 research and innovation program under grant agreement no. 817578 TRIATLAS; NOAA’s Climate Variability and Prediction Program within the Climate Program Office (grant nos. GC19-305 and GC19-301); NOAA cooperative agreement NA15OAR4320063; NOAA's Climate Program Office and base funds to NOAA/AOML's Physical Oceanography Division; Swiss National Science Foundation grant no. 188731; the UAS Program Office, Climate Program Office, and Physical Sciences Laboratory and by the US National Science Foundation (NSF) through grant AGS-1938108; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC 2037 “CLICCS – Climate, Climatic Change, and Society” – project no. 390683824; and Poland’s National Science Centre grant no. UMO-2018/30/M/ST10/00674 and Foundation for Polish Science grant no. POIR.04.04.00-00-3FD6/17-02.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 97 (1975), S. 4152-4152 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 96 (1974), S. 7265-7269 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 2251-2268 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The generalization of the local-to-normal transition seen in symmetric triatomics is considered for nonsymmetric molecules and 2:1 Fermi resonance systems. A straightforward generalization based on a division of phase space into local and normal regions is not possible. Instead, classification of the phase space bifurcation structure is presented as the complete generalization of the local–normal concept for all spectroscopically relevant systems of two vibrations interacting via a single nonlinear resonance. The polyad phase sphere (PPS) is shown to be the natural arena to analyze the bifurcation structure for resonances of arbitrary order. For 1:1 and 2:1 resonances, the bifurcation problem is reduced to one or two great circles on the phase sphere. All bifurcations are shown to be examples of elementary bifurcations of vector fields in one dimension. The classification of the bifurcation structure is therefore governed and greatly simplified by the theory of the universal unfolding and codimension of elementary bifurcations. The implications for large-scale bifurcation structure and transport in molecules with chaotic motion are briefly discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 88 (1988), S. 2205-2215 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The evolution of the semiclassical phase space of a Fermi resonance spectrum is investigated as the strength of the resonance coupling is varied between zero and the strong coupling limit. The phase space evolution gives information beyond that contained in the phase space profile of the experimental spectrum alone. The zero-order phase space is found to be different in important respects from that of the pendulum model of a nonlinear resonance. In the weak coupling regime, the phase space evolution is essentially like that of a dynamical barrier picture. In the strong coupling regime of "intrinsic resonance,'' the phase space structure is much different. Topology change appears to take place in a more discontinuous manner than in the weak coupling regime. The phase space evolution shows that some levels are problematic for an adiabatic switching treatment. The origin of some anomalous levels seen both in phase space profiles of experimental spectra and in semiclassical quantization studies is clarified.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 7196-7204 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The implications of approximate dynamical constants of motion for statistical analysis of highly excited vibrational spectra are investigated. The existence of approximate dynamical constants is related to localized chaos and partial assignability of a "chaotic spectrum.'' Approximate dynamical constants are discussed in a dynamical symmetry breaking formulation of the transition from periodic to quasiperiodic motion, and from quasiperiodic to chaotic motion. Level repulsion, leading to a Wigner distribution in the case of a strongly chaotic system, is shown to originate in dynamical symmetry breaking via the noncrossing rule that states of the same symmetry do not cross. It is argued that quantum numbers for dynamical constants must be correctly assigned to detect localized chaos in statistical spectroscopy. Two possible kinds of approximate constants, for a "total polyad number'' and a bend normal mode, are discussed in relation to two coupling schemes that could govern the transition to chaos in H2O.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 90 (1989), S. 6086-6098 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A method is presented to depict the intramolecular dynamics of resonantly coupled vibrations, starting from the experimental overtone and combination spectrum. The nonlinear least-squares fit of the spectrum is used to obtain a semiclassical phase space Hamiltonian via the Heisenberg correspondence principle. This integrable Hamiltonian, corresponding to quasiperiodic motion, is used to generate a classical trajectory in phase space for each energy level in a resonance polyad. Polyad phase space profiles are shown to have complete mutual consistency starting from a fit in either the local or normal representation. It is argued that the best way to depict the phase space profile is on a spherical surface called the polyad phase sphere. Represented in this way, the local and normal mode phase spaces are seen to be a single entity, manifestly equivalent by a 90° rotation. The phase space trajectories can be converted into a coordinate space representation. This gives an easily visualized picture of the semiclassical intramolecular dynamics corresponding to each energy level. The polyad phase spheres from the fits of the experimental stretching spectra of H2O, O3 and SO2 are displayed. H2O and O3 are seen to be molecules with a local to normal modes transition, while SO2 is seen to be very near the pure normal modes limit. The experimentally determined phase space dynamics of H2O seen on the phase sphere are compared with the dynamics determined by Lawton and Child from trajectory calculations on the Sorbie–Murrell potential surface. The coordinate space trajectories corresponding to the phase spheres are compared with wave functions from the fit of the spectrum.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 87 (1987), S. 5386-5392 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The algebraic resonance quantization (ARQ) method has previously been investigated for coupled Morse oscillators with moderate coupling and a substantial degree of classical chaos. This method is investigated here for strong coupling with the transition to global chaos and a Wigner distribution of level spacings in the quantum spectrum. A sparse matrix multiresonance approximation (SMRA) is found to give good results even when there is global chaos. A truncated basis set approximation (TMRA) is successful for moderate coupling but breaks down for strong coupling. Implications of these results for calculation of rotation–vibration levels of polyatomics in the regime of global chaos are discussed. Prospects for nonlinear least-squares fitting of experimental spectra in the regime of global chaos are also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 93 (1990), S. 6630-6635 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A theory of approximate dynamical constants of motion is presented for vibrational (and implicitly, rovibrational) spectra of polyatomics with multiple nonlinear resonances. The formalism is developed in terms of simple vector algebra. The theory is applied to Hamiltonians used in fits of experimental spectra of H2O, CHClF2, and acetylene, with attention to reduced dimension motion, assignability of spectra, and statistical analysis of chaotic spectra. The approximate constants may be of interest as bottlenecks to vibrational energy flow in polyatomics. They may also be useful in reducing the size of basis sets in quantum-mechanical calculations of rotation–vibration spectra.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 93 (1990), S. 159-175 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The detailed level-by-level fitting of spectra of systems with strongly chaotic classical dynamics is investigated. Fitting of these "unassignable chaotic spectra'' is advocated as a desirable counterpart to statistical analysis, giving a detailed probe of molecular potential surfaces and intramolecular dynamics, including phase-space "bottlenecks.'' The role of "assigning'' levels in a spectral fit is discussed. It is concluded that what is really necessary for fitting is to "label'' the spectrum, in a sense made precise. There is no barrier, in principle, to fitting chaotic spectra that may be unassignable in terms of the usual zero-order quantum numbers such as normal modes. The difficulties introduced into the labeling process by experimental factors of spectral resolution and sensitivity are considered. The occurrence of missing levels or features is identified as the key labeling problem. A "bootstrap'' method is introduced to label and fit a spectrum with missing levels. The "bootstrap'' method works by using the knowledge obtained at each energy range of the fit to successively label and fit higher energies. The bootstrap method is tested on simulated experimental spectra. A program called fitter uses the bootstrap procedure successfully to identify missing levels, label and fit the spectrum, [AV:and reproduce the molecular potential. The occurrence of doublets in highly excited spectra is noted as possible spectral evidence of a bottleneck giving rise to chaotic local modes. Fitting of large-scale "clump'' features is discussed as a means to probe energy flow dynamics and potentials of "doorway'' modes of molecules. Fitting of features or individual levels on successively finer energy scales is discussed as a probe of subsequent energy flow dynamics through "interior'' modes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...