ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 83-89 
    ISSN: 0730-2312
    Keywords: pH ; osteoblasts ; collagen synthesis ; alkaline phosphatase activity ; glycolysis ; DNA synthesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The effect of medium pH on the activity of cultured human osteoblasts was investigated in this study. Osteoblasts derived from explants of human trabecular bone were grown to confluence and subcultured. The first-pass cells were incubated in Hepes-buffered media at initial pHs adjusted from 7.0 to 7.8. Osteoblast function was evaluated by measuring lactate production, alkaline phosphatase activity, proline hydroxylation, DNA content, and thymidine incorporation. Changes in medium pH were determined from media pHs recorded at the beginning and end of the final 48 h incubation period. As medium pH increased through pH 7.6, collagen synthesis, alkaline phosphatase activity, and thymidine incorporation increased. DNA content increased from pH 7.0 to 7.2, plateaued from pH 7.2 to 7.6, and increased again from pH 7.6 to 7.8. The changes in the medium pH were greatest at pHs 7.0 and 7.8, modest at pHs 7.4 and 7.6, and did not change at 7.2, suggesting that the pHs are migrating towards pH 7.2. Lactate production increased at pH 7.0 but remained constant from 7.2 to 7.8. These results suggest that in the pH range from 7.0-7.6 the activity of human osteoblasts increases with increasing pH, that this increase in activity does not require an increase in glycolytic activity, and that pH 7.2 may be the optimal pH for these cells. J. Cell. Biochem. 68:83-89, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9304
    Keywords: Ti-6Al-4V ; thin films ; osteoblast ; cell culture ; growth and metabolism ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The purpose of this study was to evaluate the efficacy of using high vacuum, thermal evaporation to deposit thin films of Ti-6Al-4V onto plates for subsequent cell culture investigations. Osteoblastic response to thin-film coated plates was compared to that of cells grown on Ti alloy disk inserts and uncoated culture plates. The Ti alloy disks were polished, cleaned, and passivated following a commercial protocol for orthopedic implants. Mean surface roughness was 262 nm for the Ti alloy disks and 4.756 nm for the coated culture plates. Osteoblasts isolated from 16-day chick embryo calvariae were cultured on polystyrene, thin films, and disks. At confluence, the cells were cultured an additional 48 h and were evaluated for cell number (DNA content), rate of glycolysis (lactate production), alkaline phosphatase activity (ALPase), and collagenous (3H-proline hydroxylation) and noncollagenous protein synthesis. Cell morphology was similar for the controls, disks, and thin-film groups. DNA, lactate, cell layer ALPase, 3H-hydroxyproline, and noncollagenous protein were not different (p 〉 0.05) among the control, thin-film, and disk groups. Medium ALPase was lower (p 〈 0.05) in the thin-film group compared to the control group. Although aluminum and vanadium percentages varied from nominal in the thin-film groups (11Al-2V as opposed to 6Al-4V), avian osteoblasts responded similarly to the Ti alloy thin films, disks, and uncoated culture plates for the smooth surfaces tested. The thin-film cell culture system used for elemental material studies appears to offer a promising method for the investigation of cellular response to alloyed biomaterials as well. Proper adjustments in alloy percentages before deposition, however, need to be made if thermal evaporation is utilized. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 42, 238-244, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...