ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Effects of elevated CO2 treatments (ambient: 503 µatm, elevated: 1,179 µatm) and differences in food availability on cod larval growth, skeletogenesis (vertebrate ossification) and gill development were analysed. Larvae fed ad libitum showed little difference in growth and skeletogenesis due to the CO2 treatment, but larvae under energy limitation were significantly larger and had further developed skeletal structures in the elevated CO2 treatment. However, the elevated CO2 group had comparatively smaller functional gills indicating a mismatch between size and function and a trade‐off between growth and organ development, which is critically important to interpret acidification effects on early life stages of fish. Abstract In order to understand the effect of global change on marine fishes, it is imperative to quantify the effects on fundamental parameters such as survival and growth. Larval survival and recruitment of the Atlantic cod (Gadus morhua) were found to be heavily impaired by end‐of‐century levels of ocean acidification. Here, we analysed larval growth among 35–36 days old surviving larvae, along with organ development and ossification of the skeleton. We combined CO2 treatments (ambient: 503 µatm, elevated: 1,179 µatm) with food availability in order to evaluate the effect of energy limitation in addition to the ocean acidification stressor. As expected, larval size (as a proxy for growth) and skeletogenesis were positively affected by high food availability. We found significant interactions between acidification and food availability. Larvae fed ad libitum showed little difference in growth and skeletogenesis due to the CO2 treatment. Larvae under energy limitation were significantly larger and had further developed skeletal structures in the elevated CO2 treatment compared to the ambient CO2 treatment. However, the elevated CO2 group revealed impairments in critically important organs, such as the liver, and had comparatively smaller functional gills indicating a mismatch between size and function. It is therefore likely that individual larvae that had survived acidification treatments will suffer from impairments later during ontogeny. Our study highlights important allocation trade‐off between growth and organ development, which is critically important to interpret acidification effects on early life stages of fish.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-12
    Description: The Journal of Physical Chemistry B DOI: 10.1021/jp3039835
    Electronic ISSN: 1520-5207
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-10-11
    Description: We present a new molecular simulation technique for determining partial molar enthalpies in mixtures of gases and liquids from single simulations, without relying on particle insertions, deletions, or identity changes. The method can also be applied to systems with chemical reactions. We demonstrate our method for binary mixtures of Weeks-Chandler-Anderson particles by comparing with conventional simulation techniques, as well as for a simple model that mimics a chemical reaction. The method considers small subsystems inside a large reservoir (i.e., the simulation box), and uses the construction of Hill to compute properties in the thermodynamic limit from small-scale fluctuations. Results obtained with the new method are in excellent agreement with those from previous methods. Especially for modeling chemical reactions, our method can be a valuable tool for determining reaction enthalpies directly from a single MD simulation.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-13
    Description: The process of carbon capture and sequestration has been proposed as a method of mitigating the build-up of greenhouse gases in the atmosphere. If implemented, the cost of electricity generated by a fossil fuel-burning power plant would rise substantially, owing to the expense of removing CO2 from the effluent stream. There is therefore an urgent need for more efficient gas separation technologies, such as those potentially offered by advanced solid adsorbents. Here we show that diamine-appended metal-organic frameworks can behave as 'phase-change' adsorbents, with unusual step-shaped CO2 adsorption isotherms that shift markedly with temperature. Results from spectroscopic, diffraction and computational studies show that the origin of the sharp adsorption step is an unprecedented cooperative process in which, above a metal-dependent threshold pressure, CO2 molecules insert into metal-amine bonds, inducing a reorganization of the amines into well-ordered chains of ammonium carbamate. As a consequence, large CO2 separation capacities can be achieved with small temperature swings, and regeneration energies appreciably lower than achievable with state-of-the-art aqueous amine solutions become feasible. The results provide a mechanistic framework for designing highly efficient adsorbents for removing CO2 from various gas mixtures, and yield insights into the conservation of Mg(2+) within the ribulose-1,5-bisphosphate carboxylase/oxygenase family of enzymes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McDonald, Thomas M -- Mason, Jarad A -- Kong, Xueqian -- Bloch, Eric D -- Gygi, David -- Dani, Alessandro -- Crocella, Valentina -- Giordanino, Filippo -- Odoh, Samuel O -- Drisdell, Walter S -- Vlaisavljevich, Bess -- Dzubak, Allison L -- Poloni, Roberta -- Schnell, Sondre K -- Planas, Nora -- Lee, Kyuho -- Pascal, Tod -- Wan, Liwen F -- Prendergast, David -- Neaton, Jeffrey B -- Smit, Berend -- Kortright, Jeffrey B -- Gagliardi, Laura -- Bordiga, Silvia -- Reimer, Jeffrey A -- Long, Jeffrey R -- England -- Nature. 2015 Mar 19;519(7543):303-8. doi: 10.1038/nature14327. Epub 2015 Mar 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley, California 94720, USA. ; 1] Department of Chemical and Biological Engineering, University of California, Berkeley, California 94720, USA [2] Department of Chemistry, Zhejiang University, Hangzhou 310027, China. ; Chemistry Department, NIS and INSTM Centre of Reference, University of Turin, Via Quarello 15, I-10135 Torino, Italy. ; Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; Department of Chemical and Biological Engineering, University of California, Berkeley, California 94720, USA. ; 1] Universite Grenoble Alpes, Science et Ingenierie des Materiaux et Procedes (SIMAP), F-38000 Grenoble, France [2] Centre National de la Recherche Scientifique, SIMAP, F-38000, Grenoble, France. ; 1] Department of Chemical and Biological Engineering, University of California, Berkeley, California 94720, USA [2] Department of Chemistry, Norwegian University of Science and Technology, Hogskoleringen 5, 7491 Trondheim, Norway. ; 1] Department of Chemical and Biological Engineering, University of California, Berkeley, California 94720, USA [2] Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA. ; Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA. ; 1] Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA [2] Department of Physics, University of California, Berkeley, California 94720, USA [3] Kavli Energy Nanosciences Institute, University of California, Berkeley, California 94720, USA. ; 1] Department of Chemical and Biological Engineering, University of California, Berkeley, California 94720, USA [2] Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA [3] Institut des Sciences et Ingenierie Chimiques, Valais, Ecole Polytechnique Federale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1950 Sion, Switzerland. ; 1] Department of Chemical and Biological Engineering, University of California, Berkeley, California 94720, USA [2] Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; 1] Department of Chemistry, University of California, Berkeley, California 94720, USA [2] Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25762144" target="_blank"〉PubMed〈/a〉
    Keywords: Adsorption ; Amines/*chemistry ; Carbon Dioxide/*chemistry/*isolation & purification ; *Carbon Sequestration ; Greenhouse Effect/prevention & control ; Magnesium/metabolism ; Ribulose-Bisphosphate Carboxylase/chemistry/metabolism ; Temperature ; X-Ray Diffraction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-05-02
    Description: Schizophrenia is a devastating, highly heritable brain disorder of unknown etiology. Recently, the first common genetic variant associated on a genome-wide level with schizophrenia and possibly bipolar disorder was discovered in ZNF804A (rs1344706). We show, by using an imaging genetics approach, that healthy carriers of rs1344706 risk genotypes exhibit no changes in regional activity but pronounced gene dosage-dependent alterations in functional coupling (correlated activity) of dorsolateral prefrontal cortex (DLPFC) across hemispheres and with hippocampus, mirroring findings in patients, and abnormal coupling of amygdala. Our findings establish disturbed connectivity as a neurogenetic risk mechanism for psychosis supported by genome-wide association, show that rs1344706 or variation in linkage disequilibrium is functional in human brain, and validate the intermediate phenotype strategy in psychiatry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Esslinger, Christine -- Walter, Henrik -- Kirsch, Peter -- Erk, Susanne -- Schnell, Knut -- Arnold, Claudia -- Haddad, Leila -- Mier, Daniela -- Opitz von Boberfeld, Carola -- Raab, Kyeon -- Witt, Stephanie H -- Rietschel, Marcella -- Cichon, Sven -- Meyer-Lindenberg, Andreas -- New York, N.Y. -- Science. 2009 May 1;324(5927):605. doi: 10.1126/science.1167768.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, J5, 68159 Mannheim, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19407193" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Affective Symptoms/genetics/physiopathology ; Bipolar Disorder/genetics/physiopathology ; Brain Mapping ; Female ; Genetic Predisposition to Disease ; Genome-Wide Association Study ; Genotype ; Hippocampus/*physiology ; Humans ; Kruppel-Like Transcription Factors/*genetics ; Magnetic Resonance Imaging ; Male ; Mental Processes ; Phenotype ; *Polymorphism, Single Nucleotide ; Prefrontal Cortex/*physiology ; Schizophrenia/*genetics/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-03-20
    Description: Elucidating how dispersal and landscape connectivity influence metacommunity stability will shed light on natural processes structuring ecosystems and help prioritize conservation actions in an increasingly fragmented world. Much of the theoretical and mathematical development of the metacommunity concept has been based on simplified experimental systems or simulated data. We still have limited understanding of how variation in the habitat matrix and species-specific differences in dispersal ability contribute to metacommunity dynamics in heterogeneous landscapes. We model a metacommunity of rainforest mammals in Borneo, a tropical biodiversity hotspot, where protected areas are increasingly isolated by ongoing habitat disturbance and loss. We employ a combination of hierarchical models of local abundance, circuit-theory-based dispersal analysis, and metapopulation models. Our goal was to understand which landscape links were the most important to metapopulation persistence and metacommunity stability. Links were particularly important if they were short and connected two large patches. This was partly because only the very shortest links could be traversed by poorly dispersing species, including small herbivores such as chevrotains ( Tragulus spp.) and porcupines. Links that join large patches into a “super-patch” may also promote island-mainland rather than Levins-type metapopulation dynamics for good dispersers, particularly large carnivores such as clouded leopards ( Neofelis diardi ) and sun bears ( Helarctos malayanus ), reducing metapopulation extinction risk and thereby enhancing metacommunity stability. Link importance to metacommunity stability was highly correlated between heterogeneous and homogeneous landscapes. But link importance to metapopulation capacity varied strongly across species, and the correlation between heterogeneous and homogeneous landscape matrix scenarios was low for poorly dispersing taxa. This suggests that the environmental conditions in the area between habitat patches –the landscape matrix– is important for assessing certain individual species but less so for understanding the stability of the entire metacommunity. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-22
    Description: The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 x 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393366/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393366/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hibar, Derrek P -- Stein, Jason L -- Renteria, Miguel E -- Arias-Vasquez, Alejandro -- Desrivieres, Sylvane -- Jahanshad, Neda -- Toro, Roberto -- Wittfeld, Katharina -- Abramovic, Lucija -- Andersson, Micael -- Aribisala, Benjamin S -- Armstrong, Nicola J -- Bernard, Manon -- Bohlken, Marc M -- Boks, Marco P -- Bralten, Janita -- Brown, Andrew A -- Chakravarty, M Mallar -- Chen, Qiang -- Ching, Christopher R K -- Cuellar-Partida, Gabriel -- den Braber, Anouk -- Giddaluru, Sudheer -- Goldman, Aaron L -- Grimm, Oliver -- Guadalupe, Tulio -- Hass, Johanna -- Woldehawariat, Girma -- Holmes, Avram J -- Hoogman, Martine -- Janowitz, Deborah -- Jia, Tianye -- Kim, Sungeun -- Klein, Marieke -- Kraemer, Bernd -- Lee, Phil H -- Olde Loohuis, Loes M -- Luciano, Michelle -- Macare, Christine -- Mather, Karen A -- Mattheisen, Manuel -- Milaneschi, Yuri -- Nho, Kwangsik -- Papmeyer, Martina -- Ramasamy, Adaikalavan -- Risacher, Shannon L -- Roiz-Santianez, Roberto -- Rose, Emma J -- Salami, Alireza -- Samann, Philipp G -- Schmaal, Lianne -- Schork, Andrew J -- Shin, Jean -- Strike, Lachlan T -- Teumer, Alexander -- van Donkelaar, Marjolein M J -- van Eijk, Kristel R -- Walters, Raymond K -- Westlye, Lars T -- Whelan, Christopher D -- Winkler, Anderson M -- Zwiers, Marcel P -- Alhusaini, Saud -- Athanasiu, Lavinia -- Ehrlich, Stefan -- Hakobjan, Marina M H -- Hartberg, Cecilie B -- Haukvik, Unn K -- Heister, Angelien J G A M -- Hoehn, David -- Kasperaviciute, Dalia -- Liewald, David C M -- Lopez, Lorna M -- Makkinje, Remco R R -- Matarin, Mar -- Naber, Marlies A M -- McKay, D Reese -- Needham, Margaret -- Nugent, Allison C -- Putz, Benno -- Royle, Natalie A -- Shen, Li -- Sprooten, Emma -- Trabzuni, Daniah -- van der Marel, Saskia S L -- van Hulzen, Kimm J E -- Walton, Esther -- Wolf, Christiane -- Almasy, Laura -- Ames, David -- Arepalli, Sampath -- Assareh, Amelia A -- Bastin, Mark E -- Brodaty, Henry -- Bulayeva, Kazima B -- Carless, Melanie A -- Cichon, Sven -- Corvin, Aiden -- Curran, Joanne E -- Czisch, Michael -- de Zubicaray, Greig I -- Dillman, Allissa -- Duggirala, Ravi -- Dyer, Thomas D -- Erk, Susanne -- Fedko, Iryna O -- Ferrucci, Luigi -- Foroud, Tatiana M -- Fox, Peter T -- Fukunaga, Masaki -- Gibbs, J Raphael -- Goring, Harald H H -- Green, Robert C -- Guelfi, Sebastian -- Hansell, Narelle K -- Hartman, Catharina A -- Hegenscheid, Katrin -- Heinz, Andreas -- Hernandez, Dena G -- Heslenfeld, Dirk J -- Hoekstra, Pieter J -- Holsboer, Florian -- Homuth, Georg -- Hottenga, Jouke-Jan -- Ikeda, Masashi -- Jack, Clifford R Jr -- Jenkinson, Mark -- Johnson, Robert -- Kanai, Ryota -- Keil, Maria -- Kent, Jack W Jr -- Kochunov, Peter -- Kwok, John B -- Lawrie, Stephen M -- Liu, Xinmin -- Longo, Dan L -- McMahon, Katie L -- Meisenzahl, Eva -- Melle, Ingrid -- Mohnke, Sebastian -- Montgomery, Grant W -- Mostert, Jeanette C -- Muhleisen, Thomas W -- Nalls, Michael A -- Nichols, Thomas E -- Nilsson, Lars G -- Nothen, Markus M -- Ohi, Kazutaka -- Olvera, Rene L -- Perez-Iglesias, Rocio -- Pike, G Bruce -- Potkin, Steven G -- Reinvang, Ivar -- Reppermund, Simone -- Rietschel, Marcella -- Romanczuk-Seiferth, Nina -- Rosen, Glenn D -- Rujescu, Dan -- Schnell, Knut -- Schofield, Peter R -- Smith, Colin -- Steen, Vidar M -- Sussmann, Jessika E -- Thalamuthu, Anbupalam -- Toga, Arthur W -- Traynor, Bryan J -- Troncoso, Juan -- Turner, Jessica A -- Valdes Hernandez, Maria C -- van 't Ent, Dennis -- van der Brug, Marcel -- van der Wee, Nic J A -- van Tol, Marie-Jose -- Veltman, Dick J -- Wassink, Thomas H -- Westman, Eric -- Zielke, Ronald H -- Zonderman, Alan B -- Ashbrook, David G -- Hager, Reinmar -- Lu, Lu -- McMahon, Francis J -- Morris, Derek W -- Williams, Robert W -- Brunner, Han G -- Buckner, Randy L -- Buitelaar, Jan K -- Cahn, Wiepke -- Calhoun, Vince D -- Cavalleri, Gianpiero L -- Crespo-Facorro, Benedicto -- Dale, Anders M -- Davies, Gareth E -- Delanty, Norman -- Depondt, Chantal -- Djurovic, Srdjan -- Drevets, Wayne C -- Espeseth, Thomas -- Gollub, Randy L -- Ho, Beng-Choon -- Hoffmann, Wolfgang -- Hosten, Norbert -- Kahn, Rene S -- Le Hellard, Stephanie -- Meyer-Lindenberg, Andreas -- Muller-Myhsok, Bertram -- Nauck, Matthias -- Nyberg, Lars -- Pandolfo, Massimo -- Penninx, Brenda W J H -- Roffman, Joshua L -- Sisodiya, Sanjay M -- Smoller, Jordan W -- van Bokhoven, Hans -- van Haren, Neeltje E M -- Volzke, Henry -- Walter, Henrik -- Weiner, Michael W -- Wen, Wei -- White, Tonya -- Agartz, Ingrid -- Andreassen, Ole A -- Blangero, John -- Boomsma, Dorret I -- Brouwer, Rachel M -- Cannon, Dara M -- Cookson, Mark R -- de Geus, Eco J C -- Deary, Ian J -- Donohoe, Gary -- Fernandez, Guillen -- Fisher, Simon E -- Francks, Clyde -- Glahn, David C -- Grabe, Hans J -- Gruber, Oliver -- Hardy, John -- Hashimoto, Ryota -- Hulshoff Pol, Hilleke E -- Jonsson, Erik G -- Kloszewska, Iwona -- Lovestone, Simon -- Mattay, Venkata S -- Mecocci, Patrizia -- McDonald, Colm -- McIntosh, Andrew M -- Ophoff, Roel A -- Paus, Tomas -- Pausova, Zdenka -- Ryten, Mina -- Sachdev, Perminder S -- Saykin, Andrew J -- Simmons, Andy -- Singleton, Andrew -- Soininen, Hilkka -- Wardlaw, Joanna M -- Weale, Michael E -- Weinberger, Daniel R -- Adams, Hieab H H -- Launer, Lenore J -- Seiler, Stephan -- Schmidt, Reinhold -- Chauhan, Ganesh -- Satizabal, Claudia L -- Becker, James T -- Yanek, Lisa -- van der Lee, Sven J -- Ebling, Maritza -- Fischl, Bruce -- Longstreth, W T Jr -- Greve, Douglas -- Schmidt, Helena -- Nyquist, Paul -- Vinke, Louis N -- van Duijn, Cornelia M -- Xue, Luting -- Mazoyer, Bernard -- Bis, Joshua C -- Gudnason, Vilmundur -- Seshadri, Sudha -- Ikram, M Arfan -- Alzheimer's Disease Neuroimaging Initiative -- CHARGE Consortium -- EPIGEN -- IMAGEN -- SYS -- Martin, Nicholas G -- Wright, Margaret J -- Schumann, Gunter -- Franke, Barbara -- Thompson, Paul M -- Medland, Sarah E -- 100309/Wellcome Trust/United Kingdom -- 104036/Wellcome Trust/United Kingdom -- BB/F019394/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0700704/Medical Research Council/United Kingdom -- G0701120/Medical Research Council/United Kingdom -- G1001245/Medical Research Council/United Kingdom -- K99 LM011384/LM/NLM NIH HHS/ -- K99 MH101367/MH/NIMH NIH HHS/ -- MR/K026992/1/Medical Research Council/United Kingdom -- P41 EB015922/EB/NIBIB NIH HHS/ -- P50 AG005133/AG/NIA NIH HHS/ -- P50 AG005134/AG/NIA NIH HHS/ -- P50 AG005146/AG/NIA NIH HHS/ -- R00 LM011384/LM/NLM NIH HHS/ -- R01 AG040060/AG/NIA NIH HHS/ -- R01 EB015611/EB/NIBIB NIH HHS/ -- RF1 AG041915/AG/NIA NIH HHS/ -- U01 AG049505/AG/NIA NIH HHS/ -- U24 AG021886/AG/NIA NIH HHS/ -- U54 EB020403/EB/NIBIB NIH HHS/ -- UL1 TR001108/TR/NCATS NIH HHS/ -- UL1 TR001120/TR/NCATS NIH HHS/ -- England -- Nature. 2015 Apr 9;520(7546):224-9. doi: 10.1038/nature14101. Epub 2015 Jan 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Imaging Genetics Center, Institute for Neuroimaging &Informatics, Keck School of Medicine of the University of Southern California, Los Angeles, California 90292, USA. ; 1] Imaging Genetics Center, Institute for Neuroimaging &Informatics, Keck School of Medicine of the University of Southern California, Los Angeles, California 90292, USA. [2] Neurogenetics Program, Department of Neurology, UCLA School of Medicine, Los Angeles, California 90095, USA. ; QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia. ; 1] Department of Human Genetics, Radboud university medical center, Nijmegen 6500 HB, The Netherlands. [2] Department of Psychiatry, Radboud university medical center, Nijmegen 6500 HB, The Netherlands. [3] Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen 6500 HB, The Netherlands. [4] Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 GL, The Netherlands. ; MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK. ; 1] Laboratory of Human Genetics and Cognitive Functions, Institut Pasteur, Paris 75015, France. [2] Centre Nationale de Recherche Scientifique (CNRS) Unite de Recherche Associee (URA) 2182 Genes, Synapses and Cognition, Institut Pasteur, Paris 75015, France. [3] Universite Paris Diderot, Sorbonne Paris Cite, Paris 75015, France. ; 1] German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Greifswald 17487, Germany. [2] Department of Psychiatry, University Medicine Greifswald, Greifswald 17489, Germany. ; Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands. ; Umea Centre for Functional Brain Imaging (UFBI), Umea University, Umea 901 87, Sweden. ; 1] Brain Research Imaging Centre, University of Edinburgh, Edinburgh EH4 2XU, UK. [2] Department of Computer Science, Lagos State University, Lagos, Nigeria. [3] Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh EH4 2XU, UK. ; 1] Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney 2052, Australia. [2] School of Mathematics and Statistics, University of Sydney, Sydney 2006, Australia. ; The Hospital for Sick Children, University of Toronto, Toronto M5G 1X8, Canada. ; 1] Department of Human Genetics, Radboud university medical center, Nijmegen 6500 HB, The Netherlands. [2] Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen 6500 HB, The Netherlands. [3] Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 GL, The Netherlands. ; 1] NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo N-0316, Norway. [2] NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0424, Norway. ; 1] Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal H4H 1R3, Canada. [2] Department of Psychiatry and Biomedical Engineering, McGill University, Montreal H3A 2B4, Canada. ; Lieber Institute for Brain Development, Baltimore, Maryland 21205, USA. ; 1] Imaging Genetics Center, Institute for Neuroimaging &Informatics, Keck School of Medicine of the University of Southern California, Los Angeles, California 90292, USA. [2] Interdepartmental Neuroscience Graduate Program, UCLA School of Medicine, Los Angeles, California 90095, USA. ; Biological Psychology, Neuroscience Campus Amsterdam &EMGO Institute for Health and Care Research, VU University &VU Medical Center, Amsterdam 1081 BT, The Netherlands. ; 1] NORMENT - KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway. [2] Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen 5021, Norway. ; Central Institute of Mental Health, Medical Faculty Mannheim, University Heidelberg, Mannheim 68159, Germany. ; 1] Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands. [2] International Max Planck Research School for Language Sciences, Nijmegen 6525 XD, The Netherlands. ; Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden 01307 Germany. ; Human Genetics Branch and Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland 20892, USA. ; 1] Department of Psychology, Yale University, New Haven, Connecticut 06511, USA. [2] Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02115, USA. ; 1] Department of Human Genetics, Radboud university medical center, Nijmegen 6500 HB, The Netherlands. [2] Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 GL, The Netherlands. ; Department of Psychiatry, University Medicine Greifswald, Greifswald 17489, Germany. ; 1] Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. [2] Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. [3] Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. ; Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center, Goettingen 37075, Germany. ; 1] Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02115, USA. [2] Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02115, USA. [3] Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, Massachusetts 02141, USA. [4] Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Center for Neurobehavioral Genetics, University of California, Los Angeles, California 90095, USA. ; Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK. ; Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney 2052, Australia. ; 1] Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark. [2] The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen DK-8000, Denmark. [3] Center for integrated Sequencing, iSEQ, Aarhus University, Aarhus DK-8000, Denmark. ; Department of Psychiatry, Neuroscience Campus Amsterdam, VU University Medical Center/GGZ inGeest, Amsterdam 1081 HL, The Netherlands. ; Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh EH10 5HF, UK. ; 1] Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK. [2] Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK. ; 1] Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. [2] Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. ; 1] Department of Psychiatry, University Hospital Marques de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander 39008, Spain. [2] Cibersam (Centro Investigacion Biomedica en Red Salud Mental), Madrid 28029, Spain. ; 1] Neuropsychiatric Genetics Research Group and Department of Psychiatry, Trinity College Institute of Psychiatry, Trinity College Dublin, Dublin 2, Ireland. [2] Center for Translational Research on Adversity, Neurodevelopment and Substance Abuse (C-TRANS), Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21045, USA. ; 1] Umea Centre for Functional Brain Imaging (UFBI), Umea University, Umea 901 87, Sweden. [2] Aging Research Center, Karolinska Institutet and Stockholm University, 11330 Stockholm, Sweden. ; Max Planck Institute of Psychiatry, Munich 80804, Germany. ; 1] Multimodal Imaging Laboratory, Department of Neurosciences, University of California, San Diego, California 92093, USA. [2] Department of Cognitive Sciences, University of California, San Diego, California 92161, USA. ; 1] QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia. [2] School of Psychology, University of Queensland, Brisbane 4072, Australia. [3] Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia. ; Institute for Community Medicine, University Medicine Greifswald, Greifswald D-17475, Germany. ; 1] Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. [2] Medical and Population Genetics Program, Broad Institute of Harvard and MIT, Boston, Massachusetts 02142, USA. ; 1] NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0424, Norway. [2] Department of Psychology, University of Oslo, Oslo 0373, Norway. ; 1] The Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK. [2] Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511, USA. ; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 GL, The Netherlands. ; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal H3A 2B4, Canada. ; 1] Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden 01307 Germany. [2] Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02115, USA. [3] The Athinoula A.Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. ; 1] NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo N-0316, Norway. [2] Department of Psychiatric Research and Development, Diakonhjemmet Hospital, Oslo 0319, Norway. ; NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo N-0316, Norway. ; 1] UCL Institute of Neurology, London, United Kingdom and Epilepsy Society, London WC1N 3BG, UK. [2] Department of Medicine, Imperial College London, London W12 0NN, UK. ; Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London WC1N 3BG, UK. ; 1] Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511, USA. [2] Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut 06106, USA. ; Neuropsychiatric Genetics Research Group and Department of Psychiatry, Trinity College Institute of Psychiatry, Trinity College Dublin, Dublin 2, Ireland. ; 1] Brain Research Imaging Centre, University of Edinburgh, Edinburgh EH4 2XU, UK. [2] Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK. [3] Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh EH4 2XU, UK. ; 1] Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh EH10 5HF, UK. [2] Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511, USA. [3] Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut 06106, USA. ; 1] Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK. [2] Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia. ; 1] Texas Biomedical Research Institute, San Antonio, Texas 78245, USA. [2] University of Texas Health Science Center, San Antonio, Texas 78229, USA. ; 1] National Ageing Research Institute, Royal Melbourne Hospital, Melbourne 3052, Australia. [2] Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne 3101, Australia. ; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Brain Research Imaging Centre, University of Edinburgh, Edinburgh EH4 2XU, UK. [2] Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh EH4 2XU, UK. [3] Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK. [4] Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH4 2XU, UK. ; N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119333, Russia. ; Texas Biomedical Research Institute, San Antonio, Texas 78245, USA. ; 1] Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel 4055, Switzerland. [2] Institute of Human Genetics, University of Bonn, Bonn, D-53127, Germany. [3] Institute of Neuroscience and Medicine (INM-1), Research Centre Julich, Julich, D-52425, Germany. [4] Department of Genomics, Life &Brain Center, University of Bonn, Bonn D-53127, Germany. ; School of Psychology, University of Queensland, Brisbane 4072, Australia. ; Department of Psychiatry and Psychotherapy, Charite Universitatsmedizin Berlin, CCM, Berlin 10117, Germany. ; Clinical Research Branch, National Institute on Aging, Baltimore, Maryland 20892, USA. ; 1] Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. [2] Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. ; 1] University of Texas Health Science Center, San Antonio, Texas 78229, USA. [2] South Texas Veterans Health Care System, San Antonio, Texas 78229, USA. ; Biofunctional Imaging, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan. ; 1] Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK. [2] Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne 3101, Australia. ; 1] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA. [2] Harvard Medical School, Boston, Massachusetts 02115, USA. ; Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK. ; Department of Psychiatry, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands. ; Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald 17475, Germany. ; Department of Genomics, Life &Brain Center, University of Bonn, Bonn D-53127, Germany. ; Departments of Cognitive and Clinical Neuropsychology, VU University Amsterdam, 1081 BT Amsterdam, The Netherlands. ; Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17489, Germany. ; Department of Psychiatry, Fujita Health University School of Medicine, Toyoake 470-1192, Japan. ; Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA. ; FMRIB Centre, University of Oxford, Oxford OX3 9DU, UK. ; NICHD Brain and Tissue Bank for Developmental Disorders, University of Maryland Medical School, Baltimore, Maryland 21201, USA. ; 1] School of Psychology, University of Sussex, Brighton BN1 9QH, UK. [2] Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK. ; Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland, Baltimore, Maryland 21201, USA. ; 1] Neuroscience Research Australia, Sydney 2031, Australia. [2] School of Medical Sciences, UNSW, Sydney 2052, Australia. ; 1] Human Genetics Branch and Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland 20892, USA. [2] Department of Pathology and Cell Biology, Columbia University Medical Center, New York 10032, USA. ; Lymphocyte Cell Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA. ; Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia. ; Department of Psychiatry, Ludwig-Maximilians-Universitat, Munich 80336, Germany. ; 1] Institute of Human Genetics, University of Bonn, Bonn, D-53127, Germany. [2] Institute of Neuroscience and Medicine (INM-1), Research Centre Julich, Julich, D-52425, Germany. [3] Department of Genomics, Life &Brain Center, University of Bonn, Bonn D-53127, Germany. ; 1] FMRIB Centre, University of Oxford, Oxford OX3 9DU, UK. [2] Department of Statistics &WMG, University of Warwick, Coventry CV4 7AL, UK. ; 1] Institute of Human Genetics, University of Bonn, Bonn, D-53127, Germany. [2] Department of Genomics, Life &Brain Center, University of Bonn, Bonn D-53127, Germany. ; Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan. ; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. ; 1] Cibersam (Centro Investigacion Biomedica en Red Salud Mental), Madrid 28029, Spain. [2] Institute of Psychiatry, King's College London, London SE5 8AF, UK. ; 1] Department of Neurology, University of Calgary, Calgary T2N 2T9, Canada. [2] Department of Clinical Neuroscience, University of Calgary, Calgary T2N 2T9, Canada. ; Psychiatry and Human Behavior, University of California, Irvine, California 92617, USA. ; Department of Psychology, University of Oslo, Oslo 0373, Norway. ; 1] Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA. [2] Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of General Psychiatry, Heidelberg University Hospital, Heidelberg 69115, Germany. ; Department of Neuropathology, MRC Sudden Death Brain Bank Project, University of Edinburgh, Edinburgh EH8 9AG, UK. ; Laboratory of Neuro Imaging, Institute for Neuroimaging and Informatics, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA. ; Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, USA. ; Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302, USA. ; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH4 2XU, UK. ; Genentech, South San Francisco, California 94080, USA. ; Psychiatry and Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands. ; Neuroimaging Centre, University of Groningen, University Medical Center Groningen, Groningen 9713 AW, The Netherlands. ; Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA. ; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm SE-141 83, Sweden. ; Behavioral Epidemiology Section, National Institute on Aging Intramural Research Program, Baltimore, Maryland 20892, USA. ; Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK. ; 1] Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA. [2] Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA. [3] Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong 226001, China. ; 1] Neuropsychiatric Genetics Research Group and Department of Psychiatry, Trinity College Institute of Psychiatry, Trinity College Dublin, Dublin 2, Ireland. [2] Cognitive Genetics and Therapy Group, School of Psychology &Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland. ; 1] Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA. [2] Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA. ; 1] Department of Human Genetics, Radboud university medical center, Nijmegen 6500 HB, The Netherlands. [2] Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 GL, The Netherlands. [3] Department of Clinical Genetics, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands. ; 1] Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02115, USA. [2] Department of Psychology, Center for Brain Science, Harvard University, Boston, Massachusetts 02138, USA. ; 1] Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen 6500 HB, The Netherlands. [2] Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 GL, The Netherlands. [3] Karakter Child and Adolescent Psychiatry, Radboud university medical center, Nijmegen 6500 HB, The Netherlands. ; 1] The Mind Research Network &LBERI, Albuquerque, New Mexico 87106, USA. [2] Department of ECE, University of New Mexico, Albuquerque, New Mexico 87131, USA. ; 1] Center for Translational Imaging and Personalized Medicine, University of California, San Diego, California 92093, USA. [2] Departments of Neurosciences, Radiology, Psychiatry, and Cognitive Science, University of California, San Diego, California 92093, USA. ; Avera Institute for Human Genetics, Sioux Falls, South Dakota, 57108, USA. ; 1] Molecular and Cellular Therapeutics, The Royal College of Surgeons, Dublin 2, Ireland. [2] Neurology Division, Beaumont Hospital, Dublin 9, Ireland. ; Department of Neurology, Hopital Erasme, Universite Libre de Bruxelles, Brussels 1070, Belgium. ; 1] NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo N-0316, Norway. [2] Department of Medical Genetics, Oslo University Hospital, Oslo 0450, Norway. ; 1] Human Genetics Branch and Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland 20892, USA. [2] Janssen Research &Development, Johnson &Johnson, Titusville, New Jersey 08560, USA. ; 1] Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02115, USA. [2] The Athinoula A.Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. [3] Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Psychiatry, University of Iowa, Iowa City, Iowa 52242, USA. ; 1] German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Greifswald 17487, Germany. [2] Institute for Community Medicine, University Medicine Greifswald, Greifswald D-17475, Germany. ; 1] Max Planck Institute of Psychiatry, Munich 80804, Germany. [2] Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany. [3] University of Liverpool, Institute of Translational Medicine, Liverpool L69 3BX, UK. ; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald 17475, Germany. ; Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02115, USA. ; UCL Institute of Neurology, London, United Kingdom and Epilepsy Society, London WC1N 3BG, UK. ; 1] Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02115, USA. [2] Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02115, USA. [3] Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, Massachusetts 02141, USA. [4] Harvard Medical School, Boston, Massachusetts 02115, USA. ; Center for Imaging of Neurodegenerative Disease, San Francisco VA Medical Center, University of California, San Francisco, California 94121, USA. ; 1] Department of Child and Adolescent Psychiatry, Erasmus University Medical Centre, Rotterdam 3000 CB, The Netherlands. [2] Department of Radiology, Erasmus University Medical Centre, Rotterdam 3015 CN, The Netherlands. ; 1] NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo N-0316, Norway. [2] Department of Psychiatric Research and Development, Diakonhjemmet Hospital, Oslo 0319, Norway. [3] Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Stockholm SE-171 76, Sweden. ; 1] Human Genetics Branch and Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland 20892, USA. [2] Clinical Neuroimaging Laboratory, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland. ; 1] Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen 6500 HB, The Netherlands. [2] Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 GL, The Netherlands. ; 1] Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 GL, The Netherlands. [2] Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands. ; 1] Department of Psychiatry, University Medicine Greifswald, Greifswald 17489, Germany. [2] Department of Psychiatry and Psychotherapy, HELIOS Hospital Stralsund 18435, Germany. ; 1] Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center, Goettingen 37075, Germany. [2] Max Planck Institute of Psychiatry, Munich 80804, Germany. ; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka 565-0871, Japan. ; 1] NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo N-0316, Norway. [2] Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Stockholm SE-171 76, Sweden. ; Medical University of Lodz, Lodz 90-419, Poland. ; 1] Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK. [2] NIHR Dementia Biomedical Research Unit, King's College London, London SE5 8AF, UK. ; 1] Lieber Institute for Brain Development, Baltimore, Maryland 21205, USA. [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. ; Section of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia 06156, Italy. ; Clinical Neuroimaging Laboratory, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland. ; 1] Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK. [2] Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh EH10 5HF, UK. ; 1] Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands. [2] Center for Neurobehavioral Genetics, University of California, Los Angeles, California 90095, USA. ; 1] Rotman Research Institute, University of Toronto, Toronto M6A 2E1, Canada. [2] Departments of Psychology and Psychiatry, University of Toronto, Toronto M5T 1R8, Canada. ; 1] The Hospital for Sick Children, University of Toronto, Toronto M5G 1X8, Canada. [2] Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto M5S 3E2, Canada. ; 1] Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK. [2] Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK. ; 1] Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney 2052, Australia. [2] Neuropsychiatric Institute, Prince of Wales Hospital, Sydney 2031, Australia. ; 1] Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. [2] Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. [3] Department of Psychiatry and Psychotherapy, Charite Universitatsmedizin Berlin, CCM, Berlin 10117, Germany. ; 1] Department of Neuroimaging, Institute of Psychiatry, King's College London, London SE5 8AF, UK. [2] Biomedical Research Centre for Mental Health, King's College London, London SE5 8AF, UK. [3] Biomedical Research Unit for Dementia, King's College London, London SE5 8AF, UK. ; 1] Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio FI-70211, Finland. [2] Neurocentre Neurology, Kuopio University Hospital, Kuopio FI-70211, Finland. ; Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK. ; 1] Lieber Institute for Brain Development, Baltimore, Maryland 21205, USA. [2] Departments of Psychiatry, Neurology, Neuroscience and the Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. ; 1] Department of Radiology, Erasmus University Medical Centre, Rotterdam 3015 CN, The Netherlands. [2] Department of Epidemiology, Erasmus University Medical Centre, Rotterdam 3015 CN, The Netherlands. ; Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, Maryland 20892, USA. ; Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz 8010, Austria. ; INSERM U897, University of Bordeaux, Bordeaux 33076, France. ; 1] Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA. [2] Framingham Heart Study, Framingham, Massachusetts 01702, USA. ; 1] Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA. [2] Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA. [3] Department of Psychology, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA. ; General Internal Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA. ; Department of Epidemiology, Erasmus University Medical Centre, Rotterdam 3015 CN, The Netherlands. ; 1] The Athinoula A.Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. [2] Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA. ; 1] The Athinoula A.Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. [2] Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA. [3] Computer Science and AI Lab, Massachusetts Institute of Technology, Boston, Massachusetts 02141, USA. ; Department of Neurology University of Washington, Seattle, Washington 98195, USA. ; Institute of Molecular Biology and Biochemistry, Medical University Graz, 8010 Graz, Austria. ; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. ; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA. ; Groupe d'Imagerie Neurofonctionnelle, UMR5296 CNRS, CEA and University of Bordeaux, Bordeaux 33076, France. ; Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington 98101, USA. ; Icelandic Heart Association, University of Iceland, Faculty of Medicine, Reykjavik 101, Iceland. ; 1] Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, USA. [2] Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA. ; 1] QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia. [2] School of Psychology, University of Queensland, Brisbane 4072, Australia. ; 1] Department of Human Genetics, Radboud university medical center, Nijmegen 6500 HB, The Netherlands. [2] Department of Psychiatry, Radboud university medical center, Nijmegen 6500 HB, The Netherlands. [3] Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 GL, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25607358" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Aged, 80 and over ; Aging/genetics ; Apoptosis/genetics ; Brain/*anatomy & histology ; Caudate Nucleus/anatomy & histology ; Child ; Female ; Gene Expression Regulation, Developmental/genetics ; Genetic Loci/genetics ; Genetic Variation/*genetics ; *Genome-Wide Association Study ; Hippocampus/anatomy & histology ; Humans ; Magnetic Resonance Imaging ; Male ; Membrane Proteins/genetics ; Middle Aged ; Organ Size/genetics ; Putamen/anatomy & histology ; Sex Characteristics ; Skull/anatomy & histology ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 30 (1976), S. 319-350 
    ISSN: 1432-1424
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The sulfate and the chloride self-exchange fluxes were determined by measuring the rate of the tracer efflux from radioactively labeled human red blood cells and red blood cell ghosts. The concentration dependence and the pH-dependence of the sulfate self-exchange flux were studied. In addition, the effects of some monovalent and divalent anions on the sulfate and the chloride self-exchange fluxes were investigated. The sulfate self-exchange fluxes saturate, exhibiting a concentration maximum at sulfate concentrations between 100 and 300mm (25°C). The position of the concentration maximum depends upon pH. At high sulfate concentrations a self-inhibition of the flux becomes apparent. The apparent half-saturation constant and the apparent self-inhibition constant at pH 7.2 were 30mm and 400mm respectively. Within the pH range of 6.3–8.5, both constants decreased with increasing pH. No saturation of the sulfate self-exchange flux was observed if the sulfate concentration was raised by substituting sulfate for isoosmotic amounts of a second salt (NaCl, NaNO3, Na-acetate, Na-lactate, Na-succinate or Na2HPO4). Red blood cells and red blood cell ghosts display the same pattern of concentration responsiveness. The sulfate self-exchange flux exhibits a pH-maximum at about pH 6.2 (37°C). The location of the pH-maximum is little affected by variations of the sulfate concentration. The logarithmic plots (log $$\vec J_{SO_4 } $$ vs. pH) revealed that the flux/pH relation can be approximated by two straight lines. The slopes of the alkaline branches of the flux/pH curves range from −0.55 to −0.86, the slopes of the branches of the curves range from 0.08 to 1.14 and were strongly affected by changes of the sulfate concentrations. The apparent pK's obtained from the alkaline and from the acidic branches of the flux/pH curves were about 7.0 and 6.0, respectively. Intact red blood cells and red blood cell ghosts display the same type of pH-dependency of the sulfate self-exchange flux. The sulfate self-exchange flux is competitively inhibited by nitrate, chloride, acetate, oxalate and phosphate. The chloride self-exchange flux is competitively inhibited by thiocyanate, nitrate, sulfate and phosphate. The inhibition constants for the various anion species increase in the given sequence. The results of our studies indicate that the sulfate self-exchange flux is mediated by a “two-site transport mechanism” consisting either of a mobile carrier or a two-site pore. The experiments reported in this paper do not permit distinguishing between both transport mechanisms. The similarities of the sulfate and the chloride self-exchange flux and the mutual competition between sulfate and chloride point to a common transport system for both anion species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1424
    Keywords: Erythrocyte membrane ; phosphate transport ; anion permeability ; transport kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The concentration dependence and the pH dependence of the phosphate transport across the red cell membrane were investigated. The unidirectional phosphate fluxes were determined by measuring the32P-phosphate self-exchange in amphotericin B (5 μmol/liter) treated erythrocytes at 25°C. The flux/concentration curves display anS-shaped increase at low phosphate concentrations, a concentration optimum in the range of 150 to 200mm phosphate and a self-inhibition at high phosphate concentrations. The apparent half-saturation concentrations,P (0.5), range from 50 to 70mm and are little affected by pH. The self-inhibition constants, as far as they can be estimated, range from 400 to 600mm. The observed maximal phosphate fluxes exhibit a strong pH dependence. At pH 7.2, the actual maximal flux is 2.1×10−6 moles·min−1·g cells−1. The ascending branches of the flux/concentration curves were fitted to the Hill equation. The apparent Hill coefficients were always in the range of 1.5–2.0. The descending branches of the flux/concentration curves appear to follow the same pattern of concentration response. The flux/pH curves were bell-shaped and symmetric with regard to their pH dependence. The pH optimum is at approximately pH 6.5–6.7. The apparent pK of the activator site is in the range of 7.0 to 7.2, while the apparent pK for the inactivating site is in the range of 6.2 to 6.5. The pK-values were not appreciably affected by the phosphate concentration. According to our studies, the transport system possesses two transport sites and probably two modifier sites as indicated by the apparent Hill coefficients. In addition, the transport system has two proton binding sites, one with a higher pK that activates and one with a lower pK that inactivates the transport system. Since our experiments were executed under self-exchange conditions, they do not provide any information concerning the location of these sites at the membrane surfaces.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1424
    Keywords: anion transport ; erythrocyte ; spin labeling ; Band 3
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary NDS-TEMPO is a specific disulfonatostilbene spin label for the Band 3 substrate site (K. F. Schnell, W. Elbe, J. Käsbauer & E. Kaufmann,Biochim. Biophys. Acta 732:266–275, 1983). The pH dependence of NDS-TEMPO binding and of chloride and sulfate binding was studied in resealed human erythrocyte ghosts. pH was varied from 6.0 to 9.0. The ESR spectra from NDS-TEMPO-labeled red cell ghosts exhibited a strong immobilization of membrane-bound NDS-TEMPO. Changes of pH had no effect upon the mobility of membrane-bound NDS-TEMPO. A mutual competition between NDS-TEMPO binding and the binding of the substrate-anions, chloride and sulfate, was observed throughout the entire pH range. The maximal number of NDS-TEMPO binding sites per cell was in the range of 9.0×105 to 1.10×106 and was found to be insusceptible to changes of pH. The NDS-TEMPO/substrate-site and the chloride/substratesite dissociation constants amounted to 1.25 μm and to 17mm and were independent of pH from pH 6.0 to 8.0, while the sulfate/substrate-site dissociation constant displayed a strong pH dependency with a maximum of ∼50mm at about pH 7.0. The NDS-TEMPO inhibition constants from the chloride and the sulfate flux experiments were 0.5 μm (0°C) and 1.8 μm (25°C), respectively, and are in close accordance with the NDS-TEMPO/substrate-site dissociation constants. Our studies provide strong evidence for the assumption that NDS-TEMPO binds in fact to the substrate site of Band 3. They show that the strong pH dependence of the chloride and of the sulfate transport cannot result from the pH dependency of substrate-anion binding, but point to the participation of ionizable regulator sites in transport catalysis. These regulator sites seem to be positioned outside the substrate site of the Band 3 transport domain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...