ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-09-03
    Description: Diet strongly affects human health, partly by modulating gut microbiome composition. We used diet inventories and 16S rDNA sequencing to characterize fecal samples from 98 individuals. Fecal communities clustered into enterotypes distinguished primarily by levels of Bacteroides and Prevotella. Enterotypes were strongly associated with long-term diets, particularly protein and animal fat (Bacteroides) versus carbohydrates (Prevotella). A controlled-feeding study of 10 subjects showed that microbiome composition changed detectably within 24 hours of initiating a high-fat/low-fiber or low-fat/high-fiber diet, but that enterotype identity remained stable during the 10-day study. Thus, alternative enterotype states are associated with long-term diet.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368382/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368382/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Gary D -- Chen, Jun -- Hoffmann, Christian -- Bittinger, Kyle -- Chen, Ying-Yu -- Keilbaugh, Sue A -- Bewtra, Meenakshi -- Knights, Dan -- Walters, William A -- Knight, Rob -- Sinha, Rohini -- Gilroy, Erin -- Gupta, Kernika -- Baldassano, Robert -- Nessel, Lisa -- Li, Hongzhe -- Bushman, Frederic D -- Lewis, James D -- K24 DK078228/DK/NIDDK NIH HHS/ -- K24-DK078228/DK/NIDDK NIH HHS/ -- P30 DK050306/DK/NIDDK NIH HHS/ -- R01 AI39368/AI/NIAID NIH HHS/ -- S10RR024525/RR/NCRR NIH HHS/ -- UH2 DK083981/DK/NIDDK NIH HHS/ -- UL1RR024134/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Oct 7;334(6052):105-8. doi: 10.1126/science.1208344. Epub 2011 Sep 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. gdwu@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21885731" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Bacteria/classification/*isolation & purification ; Bacteroides/classification/isolation & purification ; Child ; Child, Preschool ; Cross-Sectional Studies ; *Diet ; Dietary Carbohydrates/administration & dosage ; Dietary Fats/administration & dosage ; Dietary Fiber/administration & dosage ; Feces/*microbiology ; Gastrointestinal Tract/*microbiology ; Humans ; *Metagenome ; Middle Aged ; Prevotella/classification/isolation & purification ; Ruminococcus/classification/isolation & purification ; Time Factors ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-02
    Description: The mammalian intestine is colonized by beneficial commensal bacteria and is a site of infection by pathogens, including helminth parasites. Helminths induce potent immunomodulatory effects, but whether these effects are mediated by direct regulation of host immunity or indirectly through eliciting changes in the microbiota is unknown. We tested this in the context of virus-helminth coinfection. Helminth coinfection resulted in impaired antiviral immunity and was associated with changes in the microbiota and STAT6-dependent helminth-induced alternative activation of macrophages. Notably, helminth-induced impairment of antiviral immunity was evident in germ-free mice, but neutralization of Ym1, a chitinase-like molecule that is associated with alternatively activated macrophages, could partially restore antiviral immunity. These data indicate that helminth-induced immunomodulation occurs independently of changes in the microbiota but is dependent on Ym1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548887/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548887/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Osborne, Lisa C -- Monticelli, Laurel A -- Nice, Timothy J -- Sutherland, Tara E -- Siracusa, Mark C -- Hepworth, Matthew R -- Tomov, Vesselin T -- Kobuley, Dmytro -- Tran, Sara V -- Bittinger, Kyle -- Bailey, Aubrey G -- Laughlin, Alice L -- Boucher, Jean-Luc -- Wherry, E John -- Bushman, Frederic D -- Allen, Judith E -- Virgin, Herbert W -- Artis, David -- 095831/Wellcome Trust/United Kingdom -- 2-P30 CA016520/CA/NCI NIH HHS/ -- 5T32A100716334/PHS HHS/ -- AI061570/AI/NIAID NIH HHS/ -- AI074878/AI/NIAID NIH HHS/ -- AI082630/AI/NIAID NIH HHS/ -- AI083022/AI/NIAID NIH HHS/ -- AI087990/AI/NIAID NIH HHS/ -- AI095466/AI/NIAID NIH HHS/ -- AI095608/AI/NIAID NIH HHS/ -- AI097333/AI/NIAID NIH HHS/ -- AI102942/AI/NIAID NIH HHS/ -- AI106697/AI/NIAID NIH HHS/ -- F32 AI085828/AI/NIAID NIH HHS/ -- F32-AI085828/AI/NIAID NIH HHS/ -- HHSN272201300006C/PHS HHS/ -- K08 DK097301/DK/NIDDK NIH HHS/ -- K08-DK097301/DK/NIDDK NIH HHS/ -- MR/J001929/1/Medical Research Council/United Kingdom -- P01 AI106697/AI/NIAID NIH HHS/ -- P30-AI045008/AI/NIAID NIH HHS/ -- P30-DK050306/DK/NIDDK NIH HHS/ -- R01 AI 084887/AI/NIAID NIH HHS/ -- R01 AI061570/AI/NIAID NIH HHS/ -- R01 AI074878/AI/NIAID NIH HHS/ -- R01 AI095466/AI/NIAID NIH HHS/ -- R01 AI097333/AI/NIAID NIH HHS/ -- R01 AI102942/AI/NIAID NIH HHS/ -- R21 AI087990/AI/NIAID NIH HHS/ -- T32-AI007532/AI/NIAID NIH HHS/ -- U01 AI095608/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 1;345(6196):578-82. doi: 10.1126/science.1256942. Epub 2014 Jul 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK. ; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Universite Paris Descartes, Paris, France. ; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. dartis@mail.med.upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25082704" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD8-Positive T-Lymphocytes/immunology ; Caliciviridae Infections/*immunology ; Coinfection/*immunology/microbiology/parasitology ; Gastroenteritis/*immunology/virology ; Germ-Free Life ; *Immunomodulation ; Intestines/immunology/microbiology/virology ; Lectins/*immunology ; Macrophage Activation ; Macrophages/immunology ; Mice ; Mice, Inbred C57BL ; Microbiota/*immunology ; Norovirus/*immunology ; Trichinella/*immunology ; Trichinellosis/*immunology ; beta-N-Acetylhexosaminidases/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2019
    Description: 〈p〉Changes in the gut microbiota and the mitochondrial genome are both linked with the development of disease. To investigate why, we examined the gut microbiota of mice harboring various mutations in genes that alter mitochondrial function. These studies revealed that mitochondrial genetic variations altered the composition of the gut microbiota community. In cross-fostering studies, we found that although the initial microbiota community of newborn mice was that obtained from the nursing mother, the microbiota community progressed toward that characteristic of the microbiome of unfostered pups of the same genotype within 2 months. Analysis of the mitochondrial DNA variants associated with altered gut microbiota suggested that microbiome species diversity correlated with host reactive oxygen species (ROS) production. To determine whether the abundance of ROS could alter the gut microbiota, mice were aged, treated with 〈i〉N〈/i〉-acetylcysteine, or engineered to express the ROS scavenger catalase specifically within the mitochondria. All three conditions altered the microbiota from that initially established. Thus, these data suggest that the mitochondrial genotype modulates both ROS production and the species diversity of the gut microbiome, implying that the connection between the gut microbiome and common disease phenotypes might be due to underlying changes in mitochondrial function.〈/p〉
    Print ISSN: 1945-0877
    Electronic ISSN: 1937-9145
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-08-08
    Description: Motivation: The human microbiome plays an important role in human disease and health. Identification of factors that affect the microbiome composition can provide insights into disease mechanism as well as suggest ways to modulate the microbiome composition for therapeutical purposes. Distance-based statistical tests have been applied to test the association of microbiome composition with environmental or biological covariates. The unweighted and weighted UniFrac distances are the most widely used distance measures. However, these two measures assign too much weight either to rare lineages or to most abundant lineages, which can lead to loss of power when the important composition change occurs in moderately abundant lineages. Results: We develop generalized UniFrac distances that extend the weighted and unweighted UniFrac distances for detecting a much wider range of biologically relevant changes. We evaluate the use of generalized UniFrac distances in associating microbiome composition with environmental covariates using extensive Monte Carlo simulations. Our results show that tests using the unweighted and weighted UniFrac distances are less powerful in detecting abundance change in moderately abundant lineages. In contrast, the generalized UniFrac distance is most powerful in detecting such changes, yet it retains nearly all its power for detecting rare and highly abundant lineages. The generalized UniFrac distance also has an overall better power than the joint use of unweighted/weighted UniFrac distances. Application to two real microbiome datasets has demonstrated gains in power in testing the associations between human microbiome and diet intakes and habitual smoking. Availability: http://cran.r-project.org/web/packages/GUniFrac Contact: hongzhe@upenn.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-04-24
    Description: Wild-living chimpanzees and gorillas harbor a multitude of Plasmodium species, including six of the subgenus Laverania, one of which served as the progenitor of Plasmodium falciparum. Despite the magnitude of this reservoir, it is unknown whether apes represent a source of human infections. Here, we used Plasmodium species-specific PCR, single-genome...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-07-26
    Description: Motivation: The variation in community composition between microbiome samples, termed beta diversity, can be measured by pairwise distance based on either presence–absence or quantitative species abundance data. PERMANOVA, a permutation-based extension of multivariate analysis of variance to a matrix of pairwise distances, partitions within-group and between-group distances to permit assessment of the effect of an exposure or intervention (grouping factor) upon the sampled microbiome. Within-group distance and exposure/intervention effect size must be accurately modeled to estimate statistical power for a microbiome study that will be analyzed with pairwise distances and PERMANOVA. Results: We present a framework for PERMANOVA power estimation tailored to marker-gene microbiome studies that will be analyzed by pairwise distances, which includes: (i) a novel method for distance matrix simulation that permits modeling of within-group pairwise distances according to pre-specified population parameters; (ii) a method to incorporate effects of different sizes within the simulated distance matrix; (iii) a simulation-based method for estimating PERMANOVA power from simulated distance matrices; and (iv) an R statistical software package that implements the above. Matrices of pairwise distances can be efficiently simulated to satisfy the triangle inequality and incorporate group-level effects, which are quantified by the adjusted coefficient of determination, omega-squared ( $${\omega }^{2}$$ ). From simulated distance matrices, available PERMANOVA power or necessary sample size can be estimated for a planned microbiome study. Availability and implementation: http://github.com/brendankelly/micropower . Contact: brendank@mail.med.upenn.edu or hongzhe@upenn.edu
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-11-13
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...