ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2019-04-16
    Description: We present ground deformations in response to water level variations at the Toktogul Reservoir, located in Kyrgyzstan, Central Asia. Ground deformations were measured by Envisat Advanced Synthetic Aperture Radar (ASAR) and Sentinel-1 Differential Interferometric Synthetic Aperture Radar (DInSAR) imagery covering the time periods 2004?2009 and 2014?2016, respectively. The net reservoir water level, as measured by satellite radar altimetry, decreased approximately 60 m (?13.5 km3) from 2004?2009, whereas, for 2014?2016, the net water level increased by approximately 51 m (?11.2 km3). The individual Small BAseline Subset (SBAS) interferograms were heavily influenced by atmospheric effects that needed to be minimized prior to the time-series analysis. We tested several approaches including corrections based on global numerical weather model data, such as the European Centre for Medium-RangeWeather Forecasts (ECMWF) operational forecast data, the ERA-5 reanalysis, and the ERA-Interim reanalysis, as well as phase-based methods, such as calculating a simple linear dependency on the elevation or the more sophisticated power-law approach. Our findings suggest that, for the high-mountain Toktogul area, the power-law correction performs the best. Envisat descending time series for the period of water recession reveal mean line-of-sight (LOS) uplift rates of 7.8 mm/yr on the northern shore of the Toktogul Reservoir close to the Toktogul city area. For the same area, Sentinel-1 ascending and descending time series consistently show a subsidence behaviour due to the replenishing of the water reservoir, which includes intra-annual LOS variations on the order of 30mm. A decomposition of the LOS deformation rates of both Sentinel-1 orbits revealed mean vertical subsidence rates of 25 mm/yr for the common time period of March 2015?November 2016, which is in very good agreement with the results derived from elastic modelling based on the TEA12 Earth model
    Type: http://purl.org/escidoc/metadata/ves/publication-types/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Type: http://purl.org/eprint/type/ConferencePaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-13
    Description: Remote Sensing, Vol. 10, Pages 929: Intercomparison and Validation of SAR-Based Ice Velocity Measurement Techniques within the Greenland Ice Sheet CCI Project Remote Sensing doi: 10.3390/rs10060929 Authors: John Peter Merryman Boncori Morten Langer Andersen Jørgen Dall Anders Kusk Martijn Kamstra Signe Bech Andersen Noa Bechor Suzanne Bevan Christian Bignami Noel Gourmelen Ian Joughin Hyung-Sup Jung Adrian Luckman Jeremie Mouginot Julia Neelmeijer Eric Rignot Kilian Scharrer Thomas Nagler Bernd Scheuchl Tazio Strozzi Ice velocity is one of the products associated with the Ice Sheets Essential Climate Variable. This paper describes the intercomparison and validation of ice-velocity measurements carried out by several international research groups within the European Space Agency Greenland Ice Sheet Climate Change Initiative project, based on space-borne Synthetic Aperture Radar (SAR) data. The goal of this activity was to survey the best SAR-based measurement and error characterization approaches currently in practice. To this end, four experiments were carried out, related to different processing techniques and scenarios, namely differential SAR interferometry, multi aperture SAR interferometry and offset-tracking of incoherent as well as of partially-coherent data. For each task, participants were provided with common datasets covering areas located on the Greenland ice-sheet margin and asked to provide mean velocity maps, quality characterization and a description of processing algorithms and parameters. The results were then intercompared and validated against GPS data, revealing in several cases significant differences in terms of coverage and accuracy. The algorithmic steps and parameters influencing the coverage, accuracy and spatial resolution of the measurements are discussed in detail for each technique, as well as the consistency between quality parameters and validation results. This allows several recommendations to be formulated, in particular concerning procedures which can reduce the impact of analyst decisions, and which are often found to be the cause of sub-optimal algorithm performance.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-16
    Description: Remote Sensing, Vol. 10, Pages 462: Ground Deformations around the Toktogul Reservoir, Kyrgyzstan, from Envisat ASAR and Sentinel-1 Data—A Case Study about the Impact of Atmospheric Corrections on InSAR Time Series Remote Sensing doi: 10.3390/rs10030462 Authors: Julia Neelmeijer Tilo Schöne Robert Dill Volker Klemann Mahdi Motagh We present ground deformations in response to water level variations at the Toktogul Reservoir, located in Kyrgyzstan, Central Asia. Ground deformations were measured by Envisat Advanced Synthetic Aperture Radar (ASAR) and Sentinel-1 Differential Interferometric Synthetic Aperture Radar (DInSAR) imagery covering the time periods 2004–2009 and 2014–2016, respectively. The net reservoir water level, as measured by satellite radar altimetry, decreased approximately 60 m (∼13.5 km3) from 2004–2009, whereas, for 2014–2016, the net water level increased by approximately 51 m (∼11.2 km3). The individual Small BAseline Subset (SBAS) interferograms were heavily influenced by atmospheric effects that needed to be minimized prior to the time-series analysis. We tested several approaches including corrections based on global numerical weather model data, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) operational forecast data, the ERA-5 reanalysis, and the ERA-Interim reanalysis, as well as phase-based methods, such as calculating a simple linear dependency on the elevation or the more sophisticated power–law approach. Our findings suggest that, for the high-mountain Toktogul area, the power–law correction performs the best. Envisat descending time series for the period of water recession reveal mean line-of-sight (LOS) uplift rates of 7.8 mm/year on the northern shore of the Toktogul Reservoir close to the Toktogul city area. For the same area, Sentinel-1 ascending and descending time series consistently show a subsidence behaviour due to the replenishing of the water reservoir, which includes intra-annual LOS variations on the order of 30 mm. A decomposition of the LOS deformation rates of both Sentinel-1 orbits revealed mean vertical subsidence rates of 25 mm/year for the common time period of March 2015–November 2016, which is in very good agreement with the results derived from elastic modelling based on the TEA12 Earth model.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-27
    Description: We use 124 scenes of TerraSAR–X data that were acquired in 2009 and 2010 to analyse the spatial and temporal variability in surface kinematics of the debris-covered Inylchek Glacier, located in the Tien Shan mountain range in Central Asia. By applying the feature tracking method to the intensity information of the radar data and combining the results from the ascending and descending orbits, we derive the surface velocity field of the glaciated area. Analysing the seasonal variations over the upper part of the Southern Inylchek branch, we find a temperature-related increase in velocity from 25 cm/d up to 50 cm/d between spring and summer, with the peak occurring in June. Another prominent velocity peak is observable one month later in the lower part of the Southern Inylchek branch. This area shows generally little motion, with values of approximately 5–10 cm/d over the year, but yields surface kinematics of up to 25 cm/d during the peak period. Comparisons of the dates of annual glacial lake outburst floods (GLOFs) of the proglacial Lake Merzbacher suggest that this lower part is directly influenced by the drainage, leading to the observed mini-surge, which has over twice the normal displacement rate. With regard to the GLOF and the related response of Inylchek Glacier, we conclude that X–band radar systems such as TerraSAR–X have a high potential for detecting and characterising small-scale glacial surface kinematic variations and should be considered for future inter-annual glacial monitoring tasks.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...