ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Proceed order?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 391 (1998), S. 575-577 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The spatial distributions of certain sea-surface properties, such as temperature, fluctuate on timescales from months to decades and in synchrony with the main regional atmospheric patterns comprising the global climate system. Although it has long been assumed that the ocean is submissive to ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 265 (1977), S. 131-133 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The polar front, in reality a transition zone between antarctic and subantarctic water masses5, is most clearly revealed in vertical sections of temperature as that from our data shown in Fig. 1. South of the frontal zone there is a temperature minimum layer between 100 and 300m. As noted by ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU / Wiley
    In:  Journal of Geophysical Research: Oceans, 83 (C12). pp. 6093-6113.
    Publication Date: 2018-03-02
    Description: An intensive three-dimensional survey of the Antarctic Polar Front was made in the Drake Passage in March 1976. The front, which was imbedded within one of the high-velocity cores of the circumpolar current, is viewed as a water mass boundary demarking the northern extent of near-surface antarctic waters. Within the front, water masses are observed to intrude, one above the other, with characteristic vertical scales of 50–100 m. The intrusions are horizontally anisotropic, being elongated in the alongstream direction and constrained primarily to the upper 800 m of the front. The spatial and temporal persistence of the variability is examined through the analysis of continuous vertical profiles of horizontal velocity, temperature, salinity, and oxygen with discrete sampling of nutrients. Analysis of the velocity data showed the mean current flowing to the NNE with speeds of the order of 30–40 cm s−1 in the upper 600 m, with temporal variability over a 28-hour ‘yo-yo’ due primarily to internal gravity waves. The thermohaline variability was not internal wave induced but rather was associated with nearly isentropic advection of different water masses across the front. Cold fresh and warm salty intrusions did not conserve potential density, however, and double-diffusive transfers are strongly suggested as being crucial to an understanding of the dynamics of the intrusions. Applying a model (Joyce, 1977) for lateral mixing we estimate poleward temperature and salinity fluxes due to interleaving of 0.086°C cm s−1 and 0.069‰ cm s−1, respectively. If these values are typical, interleaving could play a significant role in large-scale balance of salt and, to a lesser extent, heat for the Southern Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Sears Foundation for Marine Research
    Publication Date: 2017-01-04
    Description: Author Posting. © Sears Foundation for Marine Research, 2007. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 65 (2007): 636-653, doi:10.1357/002224007783649439.
    Description: In order to explain observed southward water transport of 2-3 Sv through Davis Strait, a simple extension of Godfrey's (1989) Island Rule and a 2-D idealized numerical model simulations were made for the flow around Greenland. Godfrey's theory has been extended to permit inclusion of Bering Strait inflow and bottom friction to represent the dissipation supplied by the porous Canadian Archipelago in the modeled flow west of Greenland. In both models, the forcing has been applied in a quasi-steady manner to the circulation via climatologic wind stresses and using wind forcing for the high and low Arctic Oscillation (AO) index states. It is found that climatologic wind produces an overall cyclonic flow around Greenland. This flow is increased under winds of a positive AO index and reduced, even becoming anti-cyclonic during a negative AO phase. Model experiments show that increase of model friction results in the blocking of flow west of Greenland (decrease of water transport in Davis Strait) and a shift of more flow to the east of Greenland. Model tuning to agree with direct measurements of transport in the Davis Strait is sensitive to both the forcing and the dissipation. Numerical experiments are also run to illustrate the dependence of the physics on bathymetric variations from a flat 200-m deep ocean, on lateral friction, and on properly resolving the flow in the archipelago with the numerical model. The circum-Greenland transport by winds can exceed the Bering Strait inflow and account for most of the observed flow (ca. −2.5 Sv) to the west of Greenland. Poor representation of Canada Strait opening in the numerical models can result in the intensification of the East Greenland Current and in the reduction of the Atlantic water inflow to the Arctic Ocean.
    Description: Additional support from National Science Foundation grant (OCE-0424865) is also acknowledged. The contribution by AP is supported by the National Science Foundation Office of Polar Programs (under Cooperative Agreement Nos. OPP-0002239 and OPP-0327664) with the International Arctic Research Center, University of Alaska-Fairbanks.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-04
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 36 (2009): L02607, doi:10.1029/2008GL035918.
    Description: We study the structure of Subtropical Mode Water (STMW) within the eastward-flowing Gulf Stream as it forms during strong winter cooling. Shipboard observations using SeaSoar and ADCP reveal that while active mixing by gravitational instabilities is common, large vertical and lateral shears of the Gulf Stream play a central role in determination of the modes of active mixing. Evidence is presented that low static stability and large vertical shear can combine to cause slantwise convection/symmetric instabilities, while the large anticyclonic shears to the south of the Gulf Stream core can cause low absolute vorticity and precondition the Ertel potential vorticity to be small and more susceptible to instabilities. The area of active mixing driven by surface forcing in the presences of shear occupies a swath 50–90 km wide immediately south of the Gulf Stream core at the northern edge of the Sargasso Sea.
    Description: Support came from the National Science Foundation grants OCE-0424865 (TJ and FB) and OCE-0549699 (LT).
    Keywords: Mode water formation ; Convection in ocean fronts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: image/tiff
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-04
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 23 (2010): 3146–3154, doi:10.1175/2010JCLI3310.1.
    Description: The Atlantic meridional overturning circulation (AMOC) simulated in various ocean-only and coupled atmosphere–ocean numerical models often varies in time because of either forced or internal variability. The path of the Gulf Stream (GS) is one diagnostic variable that seems to be sensitive to the amplitude of the AMOC, yet previous modeling studies show a diametrically opposed relationship between the two variables. In this note this issue is revisited, bringing together ocean observations and comparisons with the GFDL Climate Model version 2.1 (CM2.1), both of which suggest a more southerly (northerly) GS path when the AMOC is relatively strong (weak). Also shown are some examples of possible diagnostics to compare various models and observations on the relationship between shifts in GS path and changes in AMOC strength in future studies.
    Description: We wish to acknowledge support (TJ) from WHOI’s Paul Fye Chair and NASA (NNXZX09AF35G) and to NOAA/OAR (RZ) for this work.
    Keywords: Sea surface temperature ; Meridional overturning circulation ; Gyres ; Coupled models ; Atmosphere-ocean interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-01-07
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 22 (2009): 3177–3192, doi:10.1175/2008JCLI2690.1.
    Description: Coherent, large-scale shifts in the paths of the Gulf Stream (GS) and the Kuroshio Extension (KE) occur on interannual to decadal time scales. Attention has usually been drawn to causes for these shifts in the overlying atmosphere, with some built-in delay of up to a few years resulting from propagation of wind-forced variability within the ocean. However, these shifts in the latitudes of separated western boundary currents can cause substantial changes in SST, which may influence the synoptic atmospheric variability with little or no time delay. Various measures of wintertime atmospheric variability in the synoptic band (2–8 days) are examined using a relatively new dataset for air–sea exchange [Objectively Analyzed Air–Sea Fluxes (OAFlux)] and subsurface temperature indices of the Gulf Stream and Kuroshio path that are insulated from direct air–sea exchange, and therefore are preferable to SST. Significant changes are found in the atmospheric variability following changes in the paths of these currents, sometimes in a local fashion such as meridional shifts in measures of local storm tracks, and sometimes in nonlocal, broad regions coincident with and downstream of the oceanic forcing. Differences between the North Pacific (KE) and North Atlantic (GS) may be partly related to the more zonal orientation of the KE and the stronger SST signals of the GS, but could also be due to differences in mean storm-track characteristics over the North Pacific and North Atlantic.
    Description: Support for this work from various grants [T. Joyce: NSF OCE-0424865; Y.-O. Kwon: The Grayce B. Kerr Fund and The Jessie B. Cox Endowed Fund; L.Yu: NOAA NA17RJ1223 and NASA Vector Wind Science Team through JPL Subcontract 1283726] is gratefully acknowledged.
    Keywords: Synoptic-scale processes ; Winter/cool season ; Atmospheric circulation ; Boundary currents ; Interannual variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-01-04
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 554–571, doi:10.1175/JPO2997.1.
    Description: This paper describes the oceanic variability at Bermuda between 1989 and 1999, recorded in two overlapping hydrographic time series. Station S and Bermuda Atlantic Time Series Study (BATS), which are 60 km apart, both show that a multidecadal trend of deep warming has reversed, likely as a result of the increased production of Labrador Sea Water since the early 1980s. In addition to recording similar changes in watermass properties, the two time series show similar mean vertical structure and variance as a function of pressure for temperature, salinity, and density above 1500 dbar. The seasonal cycles of these water properties at the two sites are statistically indistinguishable. The time series differ in the individual eddy events they record and in their variability below 1500 dbar. The two time series are used to investigate the propagation of eddy features. Coherence and phase calculated from the low-mode variability of density show westward propagation at 3 cm s−1 of wavelengths around 300–500 km. Satellite altimeter data are used to provide a broader spatial view of the eddy (or wave) field near Bermuda.
    Description: We acknowledge support from NSF Grant OCE-0219644, the Australian Greenhouse Office, and CSIRO.
    Keywords: Ocean variability ; Climate variability ; Seasonal cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-01-04
    Description: Author Posting. © American Meteorological Society, 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 36 (2006): 238-254, doi:10.1175/JPO2848.1.
    Description: The seasonal variation of the North Equatorial Countercurrent (NECC) in the tropical Atlantic Ocean is investigated by using a linear, one-layer reduced-gravity ocean model and by analyzing sea surface height (SSH) data from Ocean Topography Experiment (TOPEX)/Poseidon (T/P) altimeters. The T/P data indicate that the seasonal variability of the NECC geostrophic transport, between 3° and 10°N, is dominated by SSH changes in the southern flank of the current. Since the southern boundary of the NECC is located partially within the equatorial waveguide, the SSH variation there can be influenced considerably by the equatorial dynamics. Therefore, it is hypothesized that the wind stress forcing along the equator is the leading driver for the seasonal cycle of the NECC transport. The wind stress curl in the NECC region is an important but smaller contributor. This hypothesis is tested by several sensitivity experiments that are designed to separate the two forcing mechanisms. In the first sensitivity run, a wind stress field that has a zero curl is used to force the ocean model. The result shows that the NECC geostrophic transport retains most of its seasonal variability. The same happens in another experiment in which the seasonal wind stress is applied only within a narrow band along the equator outside the NECC range. To further demonstrate the role of equatorial waves, another experiment was run in which the wind stress in the Southern Hemisphere is altered so that the model excludes hemispherically symmetrical waves (Kelvin waves and odd-numbered meridional modes of equatorial Rossby waves) and instead excites only the antisymmetrical equatorial Rossby modes. The circulation in the northern tropical ocean, including the NECC, is affected considerably even though the local wind stress there remains unchanged. All these appear to support the hypothesis presented in this paper.
    Description: This study is supported by NOAA OGP’s CLIVAR-Atlantic Program (authors J. Yang and T. Joyce: NOAA Grant NA16GP1573) and NASA Physical Oceanography Program (J. Yang: JPL Grant 1217578).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-01-04
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Oceanography 68 (2012): 45-52, doi:10.1007/s10872-011-0029-0.
    Description: In this report, Eighteen Degree Water (EDW) formation will be discussed, with emphasis on advances in understanding emerging within the past decade. In particular, a recently completed field study of EDW (CLIMODE) is suggesting that EDW formation within a given winter can have at least two different dominant physics and distinct locations: one type formed in the northern Sargasso Sea, largely away from the strong flows of the Gulf Stream where 1D physics may apply, and a second type formed along the southern flank of the Gulf Stream, in a region where the background vorticity of the flow and cross-frontal mixing plays a key role in the convective formation process.
    Description: National Science Foundation (OCE 0959387)
    Description: 2012-06-06
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...