ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019-01-07
    Description: Highlights • The youngest known (2 Ma) volcanically-active subduction system. • Exceptionally diverse range of magma compositions coeval and spatially juxtaposed. • Mixing of an upwelling asthenospheric mantle melt and a slab melt. • Modern example of an immature subduction system building its proto forearc. • Modern analog of the environment where SSZ ophiolites lithosphere forms. Abstract The development of ideas leading to a greater understanding of subduction initiation is limited by the scarcity of present-day examples. Furthermore, the few examples identified so far unfortunately provide few insights into the nature of magmatism at the inception of subduction. Here we report new observations from the Matthew and Hunter (M&H) subduction zone, a very young subduction zone located in the South-West Pacific. Tectonics of the area show it is younger than 2 Ma, making the M&H the youngest known volcanically-active subduction system and hence providing unique insights into the earliest stages of subduction initiation. Volcanism in this area comprises an exceptionally diverse range of contemporaneously erupting magma compositions which are spatially juxtaposed. Pb isotopic compositions and abundance of LILE and REE strongly suggest melting of upwelling asthenospheric mantle (Indian MORB) and subducted oceanic crust (Pacific MORB of the South Fiji Basin) and the mixing of these two components. Volcanism occurs much closer to the trench compared to volcanism in more mature subduction zones. We demonstrate that the M&H subduction zone is a modern example of an immature subduction system at the stage of pre-arc, near-trench magmatism. It is not yet building an arc but what we propose to call a Subduction Initiation Terrane (SITER). Today, the proto-forearc of the M&H subduction zone is a collage of these SITERs, coeval back-arc domains and remnants of pre-existing terranes including old Vitiaz Arc crust. The M&H area represents a modern analog of a Supra Subduction Zone setting where potentially a majority of ophiolites have formed their crustal and lithospheric components. Present-day magmatism in the M&H area therefore provides clues to understanding unforeseen distribution of contrasted magmatic rock types in fossil forearcs, whether they are at the front of mature subduction zones or in ophiolites.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-07-29
    Description: The middle Jurassic Coast Range Ophiolite (CRO) is one of the most important tectonic elements in western California, cropping out as tectonically dismembered elements that extend 700 km from south to north. The volcanic and plutonic sections are commonly interpreted to represent a supra-subduction zone (SSZ) ophiolite, but models specifying a mid-ocean ridge origin have also been proposed. These contrasting interpretations have distinctly different implications for the tectonic evolution of the western Cordillera in the Jurassic. If an SSZ origin is confirmed, we can use the underlying mantle peridotites to elucidate melt processes in the mantle wedge above the subduction zone. This study uses laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) to study pyroxenes in peridotites from four mantle sections in the CRO. Trace element signatures of these pyroxenes record magmatic processes characteristic of both mid-ocean ridge and supra-subduction zone settings. Group A clinopyroxene display enriched REE concentrations [e.g., Gd (0.938–1.663 ppm), Dy (1.79–3.24 ppm), Yb (1.216–2.047 ppm), and Lu (0.168–0.290 ppm)], compared to Group B and C clinopyroxenes [e.g., Gd (0.048–0.055 ppm), Dy (0.114–0.225 ppm), Yb (0.128–0.340 ppm), and Lu (0.022–0.05 ppm)]. These patterns are also evident in orthopyroxene. The differences between these geochemical signatures could be a result of a heterogeneous upper mantle or different degrees of partial melting of the upper mantle. It will be shown that CRO peridotites were generated through fractional melting. The shapes of REE patterns are consistent with variable degrees of melting initiated within the garnet stability field. Models call for 3% dry partial melting of MORB-source asthenosphere in the garnet lherzolite field for abyssal peridotites and 15–20% further partial melting in the spinel lherzolite field, possibly by hydrous melting for SSZ peridotites. These geochemical variations and occurrence of both styles of melting regimes within close spatial and temporal association suggest that certain segments of the CRO may represent oceanic lithosphere, attached to a large-offset transform fault and that east-dipping, proto-Franciscan subduction may have been initiated along this transform. ©2009 Springer-Verlag
    Print ISSN: 0010-7999
    Electronic ISSN: 1432-0967
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: The development of ideas leading to a greater understanding of subduction initiation is limited by the scarcity of present-day examples. Furthermore, the few examples identified so far unfortunately provide few insights into the nature of magmatism at the inception of subduction. Here we report new observations from the Matthew and Hunter (M&H) subduction zone, a very young subduction zone located in the South-West Pacific. Tectonics of the area show it is younger than 2 Ma, making the M&H the youngest known volcanically-active subduction system and hence providing unique insights into the earliest stages of subduction initiation. Volcanism in this area comprises an exceptionally diverse range of contemporaneously erupting magma compositions which are spatially juxtaposed. Pb isotopic compositions and abundance of LILE and REE strongly suggest melting of upwelling asthenospheric mantle (Indian MORB) and subducted oceanic crust (Pacific MORB of the South Fiji Basin) and the mixing of these two components. Volcanism occurs much closer to the trench compared to volcanism in more mature subduction zones. We demonstrate that the M&H subduction zone is a modern example of an immature subduction system at the stage of pre-arc, near-trench magmatism. It is not yet building an arc but what we propose to call a Subduction Initiation Terrane (SITER). Today, the proto-forearc of the M&H subduction zone is a collage of these SITERs, coeval back-arc domains and remnants of pre-existing terranes including old Vitiaz Arc crust. The M&H area represents a modern analog of a Supra Subduction Zone setting where potentially a majority of ophiolites have formed their crustal and lithospheric components. Present-day magmatism in the M&H area therefore provides clues to understanding unforeseen distribution of contrasted magmatic rock types in fossil forearcs, whether they are at the front of mature subduction zones or in ophiolites.
    Print ISSN: 0012-821X
    Electronic ISSN: 1385-013X
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-03-01
    Print ISSN: 0012-821X
    Electronic ISSN: 1385-013X
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-01
    Print ISSN: 0009-2541
    Electronic ISSN: 1872-6836
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...