ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1997-07-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2005-08-01
    Print ISSN: 0021-8502
    Electronic ISSN: 1879-1964
    Topics: Chemistry and Pharmacology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-02-01
    Print ISSN: 1364-6826
    Electronic ISSN: 1879-1824
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: Interference due to the superposition of backscatter, beta, from two micron-sized droplets using a NASA/MSFC cw (continuous wave) CO2 Doppler lidar at 9.1 micrometer wavelength was detected for the first time. The resultant single beta signal from both droplets contained an interference structure with a well-defined periodicity which was accurately measured and compared with cw lidar theory. The agreement between measurements and theory is excellent, indicating that the interference arises because the droplets are moving at different speeds and, therefore, the relative droplet separation is not constant. This gives the superimposed beta signal from both droplets in the lidar beam moving in and out of constructive and destructive interference with a well-defined periodic structure. A measurement of a time-resolved signal pulse with an oscilloscope of the combined from two approx. 14.12 micrometers in diameter silicone oil droplets responding to the Gaussian lidar beam intensity at the lidar beam focus is shown. Full details of this laboratory experimental setup, particle generation method, measurement technique, and the cw lidar can be found elsewhere. The stream of silicone oil droplets resided at a Doppler-shift center frequency of f (sub D) approx. (3.4 plus or minus 0.2) MHz, giving droplet speed v approx.(21.9 plus or minus 1.3) ms (exp. -1). Also shown on a separate channel is the corresponding signature using an amplitude demodulator circuit designed to detect the amplitude envelope of f(sub D) within the pulse profile. beta from simultaneous droplet events show a complete cyclic interference structure of maximum and minimum. The average period T of the complete cycle of interference is 13.02 plus or minus.39 microseconds. Toward the right edge of the profile, the interference disappears because one of the droplets is leaving the lidar beam while the other one remains in the beam, thus, giving beta for a single droplet.
    Keywords: Communications and Radar
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 264-266; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: Routine backscatter, beta, measurements by an airborne or space-based lidar from designated earth surfaces with known and fairly uniform beta properties can potentially offer lidar calibration opportunities. This can in turn be used to obtain accurate atmospheric aerosol and cloud beta measurements on large spatial scales. This is important because achieving a precise calibration factor for large pulsed lidars then need not rest solely on using a standard hard target procedure. Furthermore, calibration from designated earth surfaces would provide an inflight performance evaluation of the lidar. Hence, with active remote sensing using lasers with high resolution data, calibration of a space-based lidar using earth's surfaces will be extremely useful. The calibration methodology using the earth's surface initially requires measuring beta of various earth surfaces simulated in the laboratory using a focused continuous wave (CW) CO2 Doppler lidar and then use these beta measurements as standards for the earth surface signal from airborne or space-based lidars. Since beta from the earth's surface may be retrieved at different angles of incidence, beta would also need to be measured at various angles of incidences of the different surfaces. In general, Earth-surface reflectance measurements have been made in the infrared, but the use of lidars to characterize them and in turn use of the Earth's surface to calibrate lidars has not been made. The feasibility of this calibration methodology is demonstrated through a comparison of these laboratory measurements with actual earth surface beta retrieved from the same lidar during the NASA/Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on NASA's DC8 aircraft from 13 - 26 September, 1995. For the selected earth surface from the airborne lidar data, an average beta for the surface was established and the statistics of lidar efficiency was determined. This was compared with the actual lidar efficiency determined with the standard calibrating hard target.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 128-131; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: The Aerosol/Lidar Science Group of the Remote Sensing Branch engages in experimental and theoretical studies of atmospheric aerosol scattering and atmospheric dynamics, emphasizing Doppler lidar as a primary tool. Activities include field and laboratory measurement and analysis efforts by in-house personnel, coordinated with similar efforts by university and government institutional researchers. The primary focus of activities related to understanding aerosol scattering is the GLObal Backscatter Experiment (GLOBE) program. GLOBE was initiated by NASA in 1986 to support the engineering design, performance simulation, and science planning for the prospective NASA Laser Atmospheric Wind Sounder (LAWS). The most important GLOBE scientific result has been identified of a background aerosol mode with a surprisingly uniform backscatter mixing ratio (backscatter normalized by air density) throughout a deep tropospheric layer. The backscatter magnitude of the background mode evident from the MSFC CW lidar measurements is remarkably similar to that evident from ground-based backscatter profile climatologies obtained by JPL in Pasadena CA, NOAA/WPL in Boulder CO, and by the Royal Signals and Radar Establishment in the United Kingdom. Similar values for the background mode have been inferred from the conversion of in situ aerosol microphysical measurements to backscatter using Mie theory. Little seasonal or hemispheric variation is evident in the survey mission data, as opposed to large variation for clouds, aerosol plums, and the marine boundary layer. Additional features include: localized aerosol residues from dissipated clouds, occasional regions having mass concentrations of nanograms per cubic meter and very low backscatter, and aerosol plumes extending thousands of kilometers and several kilometers deep. Preliminary comparison with meteorological observations thus far indicate correlation between backscatter and water vapor under high humidity conditions. Limited intercomparisons with the Stratospheric Aerosol and Gas Experiment (SAGE) limb extinction sounder shows differences in the troposphere, however, it should be noted that in general SAGE measurements have not yet been validated in the troposphere.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA(MSFC FY92 Earth Science and Applications Program Research Review; p 113-116
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: This task addresses the measurement and understanding of the physical and chemical properties of aerosol in remote regions that are responsible for aerosol backscatter at infrared wavelengths. Because it is representative of other clean areas, the remote Pacific is of extreme interest. Emphasis is on the determination size dependent aerosol properties that are required for modeling backscatter at various wavelengths and upon those features that may be used to help understand the nature, origin, cycling and climatology of these aerosols in the remote troposphere. Empirical relationships will be established between lidar measurements and backscatter derived from the aerosol microphysics as required by the NASA Doppler Lidar Program. This will include the analysis of results from the NASA GLOBE Survey Mission Flight Program. Additional instrument development and deployment will be carried out in order to extend and refine this data base. Identified activities include participation in groundbased and airborne experiments. Progress to date includes participation in, analysis of, and publication of results from Mauna Loa Backscatter Intercomparison Experiment (MABIE) and Global Backscatter Experiment (GLOBE).
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA(MSFC FY92 Earth Science and Applications Program Research Review; p 111
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-23
    Description: With a focused continuous-wave CO2 Doppler lidar at 9.1-microns wavelength, the superposition of backscatter from two approximately 14.12-micron-diameter silicone oil droplets in the lidar beam produced interference that resulted in a single backscatter pulse from the two droplets with a distinct periodic structure. This interference is caused by the phase difference in backscatter from the two droplets while they are traversing the lidar beam at different speeds, and thus the droplet separation is not constant. The complete cycle of interference, with periodicity 2(pi), gives excellent agreement between measurements and lidar theory.
    Keywords: Instrumentation and Photography
    Type: Applied Optics (ISSN 0003-6935); Volume 38; No. 15; 3387-3393
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-31
    Description: Two focused coherent, continuous wave (CW) lidars have been developed by the Marshall Space Flight Center (MSFC) for airborne and ground-based measurement of aerosol backscatter coefficients. The first of these instruments uses a mixture of CO2 and other gases, and measures backscatter at 10.6 m. The second lidar uses an isotope of carbon dioxide, which enables lasing at 9.1 m. The 10.6 m backscatter measurement serves as a reference to allow variations in backscatter due to aerosol concentration to be distinguished from variations due to spectral variability. The 10.6 m lidar has been used in airborne field programs since 1981. Development of the 9.1 m lidar was completed in early 1989. Recently, both lidars were flown on the NASA/Ames Research Center DC-8 research aircraft in the remote Pacific Basin as part of the NASA GLObal Backscatter Experiment (GLOBE) survey missions. The GLOBE program, of which the survey missions are the centerpieces, supports design and simulation studies for NASA's prospective Laser Atmospheric Wind Sounder (LAWS).
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: NASA, Washington, 4th Airborne Geoscience Workshop; p 235-236
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...