ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2019-09-05
    Description: From June to August 2018, the eruption of Kīlauea volcano on the island of Hawai‘i injected millions of cubic meters of molten lava into the nutrient-poor waters of the North Pacific Subtropical Gyre. The lava-impacted seawater was characterized by high concentrations of metals and nutrients that stimulated phytoplankton growth, resulting in an extensive plume of chlorophyll a that was detectable by satellite. Chemical and molecular evidence revealed that this biological response hinged on unexpectedly high concentrations of nitrate, despite the negligible quantities of nitrogen in basaltic lava. We hypothesize that the high nitrate was caused by buoyant plumes of nutrient-rich deep waters created by the substantial input of lava into the ocean. This large-scale ocean fertilization was therefore a unique perturbation event that revealed how marine ecosystems respond to exogenous inputs of nutrients.
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-04
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2017-12-18
    Description: Diatoms sustain the marine food web and contribute to the export of carbon from the surface ocean to depth. They account for about 40% of marine primary productivity and particulate carbon exported to depth as part of the biological pump. Diatoms have long been known to be abundant in turbulent, nutrient-rich waters, but observations and simulations indicate that they are dominant also in meso- and submesoscale structures such as fronts and filaments, and in the deep chlorophyll maximum. Diatoms vary widely in size, morphology and elemental composition, all of which control the quality, quantity and sinking speed of biogenic matter to depth. In particular, their silica shells provide ballast to marine snow and faecal pellets, and can help transport carbon to both the mesopelagic layer and deep ocean. Herein we show that the extent to which diatoms contribute to the export of carbon varies by diatom type, with carbon transfer modulated by the Si/C ratio of diatom cells, the thickness of the shells and their life strategies; for instance, the tendency to form aggregates or resting spores. Model simulations project a decline in the contribution of diatoms to primary production everywhere outside of the Southern Ocean. We argue that we need to understand changes in diatom diversity, life cycle and plankton interactions in a warmer and more acidic ocean in much more detail to fully assess any changes in their contribution to the biological pump. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-08-21
    Description: This article provides a proof-of-concept for using a biogeochemical/ecosystem/optical model with radiative transfer component as a laboratory to explore aspects of ocean colour. We focus here on the satellite ocean colour Chlorophyll-a (Chl-a) product provided by the often-used blue/green reflectance ratio algorithm. The model produces output that can be compared directly to the real world ocean colour remotely sensed reflectance. This model output can then be used to produce an ocean colour satellite-like Chl-a product using an algorithm linking the blue versus green reflectance similar to that used for the real world. Given that the model includes complete knowledge of the (model) water constituents, optics and reflectance, we can explore uncertainties and their causes in this proxy for Chl-a (called derived Chl-a in this paper). We compare the derived Chl-a the actual model Chl-a field. In the model we find that the mean absolute bias due to the algorithm is 22 % between derived and actual Chl-a. The real world algorithm is found using concurrent in situ measurement of Chl-a and radiometry. We ask whether increased in situ measurements to train the algorithm would improve the algorithm, and find a mixed result. There is a global overall improvement, but at the expense of some regions, especially in lower latitudes where the biases increase. We do find that regional specific algorithms provide a significant improvement. However, in the model, we find that no matter how the algorithm coefficients are found there can be a temporal mismatch between the derived Chl-a and the actual Chl-a. These mismatches stem from temporal decoupling between Chl-a and other optically important water constituents (such as coloured dissolved organic matter and detrital matter). The degree of decoupling differs regionally and over time. For example, in many highly seasonal regions, the timing of initiation and peak of the spring bloom in the derived Chl-a lags the actual Chl-a by days and sometimes weeks. This result indicate care should also be taken when studying phenology through satellite derived products of Chl-a. This study also re-emphasises that ocean colour derived Chl-a is not the same as the real in situ Chl-a. In fact the model derived Chl-a compares better to real world Chl-a than the model actual Chl-a. Modellers should keep this is mind when evaluating model output with ocean colour Chl-a and in particular when assimilating this product. Our study spans several disciplines: Our goal is to illustrate the use of numerical laboratory that a) helps users of ocean colour, particularly modellers, gain further understanding of the products they use; and b) the ocean colour community could use to explore other ocean colour products, their biases and uncertainties, as well as to aid in future algorithm development.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-06-16
    Description: We present a systematic study of the differences generated by coupling the same ecological–biogeochemical model to a 1°, coarse-resolution, and 1∕6°, eddy-permitting, global ocean circulation model to (a) biogeochemistry (e.g., primary production) and (b) phytoplankton community structure. Surprisingly, we find that the modeled phytoplankton community is largely unchanged, with the same phenotypes dominating in both cases. Conversely, there are large regional and seasonal variations in primary production, phytoplankton and zooplankton biomass. In the subtropics, mixed layer depths (MLDs) are, on average, deeper in the eddy-permitting model, resulting in higher nutrient supply driving increases in primary production and phytoplankton biomass. In the higher latitudes, differences in winter mixed layer depths, the timing of the onset of the spring bloom and vertical nutrient supply result in lower primary production in the eddy-permitting model. Counterintuitively, this does not drive a decrease in phytoplankton biomass but results in lower zooplankton biomass. We explain these similarities and differences in the model using the framework of resource competition theory, and find that they are the consequence of changes in the regional and seasonal nutrient supply and light environment, mediated by differences in the modeled mixed layer depths. Although previous work has suggested that complex models may respond chaotically and unpredictably to changes in forcing, we find that our model responds in a predictable way to different ocean circulation forcing, despite its complexity. The use of frameworks, such as resource competition theory, provides a tractable way to explore the differences and similarities that occur. As this model has many similarities to other widely used biogeochemical models that also resolve multiple phytoplankton phenotypes, this study provides important insights into how the results of running these models under different physical conditions might be more easily understood.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-01-30
    Description: This article provides a proof of concept for using a biogeochemical/ecosystem/optical model with a radiative transfer component as a laboratory to explore aspects of ocean colour. We focus here on the satellite ocean colour chlorophyll a (Chl a) product provided by the often-used blue/green reflectance ratio algorithm. The model produces output that can be compared directly to the real-world ocean colour remotely sensed reflectance. This model output can then be used to produce an ocean colour satellite-like Chl a product using an algorithm linking the blue versus green reflectance similar to that used for the real world. Given that the model includes complete knowledge of the (model) water constituents, optics and reflectance, we can explore uncertainties and their causes in this proxy for Chl a (called derived Chl a in this paper). We compare the derived Chl a to the actual model Chl a field. In the model we find that the mean absolute bias due to the algorithm is 22% between derived and actual Chl a. The real-world algorithm is found using concurrent in situ measurement of Chl a and radiometry. We ask whether increased in situ measurements to train the algorithm would improve the algorithm, and find a mixed result. There is a global overall improvement, but at the expense of some regions, especially in lower latitudes where the biases increase. Not surprisingly, we find that region-specific algorithms provide a significant improvement, at least in the annual mean. However, in the model, we find that no matter how the algorithm coefficients are found there can be a temporal mismatch between the derived Chl a and the actual Chl a. These mismatches stem from temporal decoupling between Chl a and other optically important water constituents (such as coloured dissolved organic matter and detrital matter). The degree of decoupling differs regionally and over time. For example, in many highly seasonal regions, the timing of initiation and peak of the spring bloom in the derived Chl a lags the actual Chl a by days and sometimes weeks. These results indicate that care should also be taken when studying phenology through satellite-derived products of Chl a. This study also reemphasizes that ocean-colour-derived Chl a is not the same as the real in situ Chl a. In fact the model derived Chl a compares better to real-world satellite-derived Chl a than the model actual Chl a. Modellers should keep this is mind when evaluating model output with ocean colour Chl a and in particular when assimilating this product. Our goal is to illustrate the use of a numerical laboratory that (a) helps users of ocean colour, particularly modellers, gain further understanding of the products they use and (b) helps the ocean colour community to explore other ocean colour products, their biases and uncertainties, as well as to aid in future algorithm development.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-09-01
    Description: Regional and idealized modeling studies have shown that increasing the physical resolution of biogeochemical models to include mesoscale and submesoscale dynamics can result in both increases and decreases in phytoplankton biomass and primary production, as well as changes in phytoplankton community structure. Here we present a systematic study of the differences generated by coupling the same ecological-biogeochemical model to a 1°, coarse-resolution, and 1/6°, eddy-permitting, global ocean circulation model. Surprisingly, we find that the modeled phytoplankton community is largely unchanged, with the same phenotypes dominating in both cases. Conversely, there are large regional variations in integrated primary production, phytoplankton and zooplankton biomass. In the subtropics, mixed layer depths are, on average, deeper in the eddy-permitting model, resulting in higher nutrient supply driving increases in primary production and phytoplankton biomass. In the higher latitudes, deeper spring mixed layer depths in the eddy-permitting model result in increased light limitation during the spring bloom. Counter-intuitively, this does not drive a decrease in phytoplankton biomass, but is reflected in decreased primary production and zooplankton biomass. We explain these similarities and differences in the model using the framework of resource competition theory, and find that they are the consequence of changes in the regional and seasonal nutrient supply and light environment, mediated by differences in the modeled mixed layer depths. Although previous work has suggested that complex models may respond chaotically and unpredictably to changes in forcing, we find that our model responds in a predictable way to different ocean circulation forcing, despite its complexity.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-15
    Description: Biodiversity of phytoplankton is important for ecosystem stability and marine biogeochemistry. However, the large scale patterns of diversity are not well understood, and are often poorly characterized in terms of statistical relationships with environmental factors (e.g. latitude, temperature, productivity). Here we use ecological theory and a global trait-based ecosystem model to provide mechanistic understanding of patterns of phytoplankton diversity. Our study suggests that phytoplankton diversity across three dimensions of trait space (size, biogeochemical function, and thermal tolerance) is controlled by a disparate combinations of drivers: the supply rate of the limiting resource, the imbalance in different resource supplies relative to competing phytoplanktons’ demands, size-selective grazing, and transport by the moving ocean. Using sensitivity studies we show that each dimension of diversity is controlled by different drivers. Models including only one (or two) of the trait dimensions will have different patterns of diversity than one which incorporates another trait dimension. We use the results of our theory/model exploration to infer the controls on the diversity patterns derived from field observations in meridional transects of the Atlantic and to explain why different taxa and size classes have differing patterns. These results suggest that it is unlikely that any single or even combination of environmental variables will be able to explain patterns of diversity.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...