ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-11-10
    Description: Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved beta-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810868/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810868/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Melcher, Karsten -- Ng, Ley-Moy -- Zhou, X Edward -- Soon, Fen-Fen -- Xu, Yong -- Suino-Powell, Kelly M -- Park, Sang-Youl -- Weiner, Joshua J -- Fujii, Hiroaki -- Chinnusamy, Viswanathan -- Kovach, Amanda -- Li, Jun -- Wang, Yonghong -- Li, Jiayang -- Peterson, Francis C -- Jensen, Davin R -- Yong, Eu-Leong -- Volkman, Brian F -- Cutler, Sean R -- Zhu, Jian-Kang -- Xu, H Eric -- R01 DK066202/DK/NIDDK NIH HHS/ -- R01 DK066202-04/DK/NIDDK NIH HHS/ -- R01 DK071662/DK/NIDDK NIH HHS/ -- R01 DK071662-05/DK/NIDDK NIH HHS/ -- R01 GM087413/GM/NIGMS NIH HHS/ -- R01 GM087413-01/GM/NIGMS NIH HHS/ -- R01 HL089301/HL/NHLBI NIH HHS/ -- R01 HL089301-03/HL/NHLBI NIH HHS/ -- England -- Nature. 2009 Dec 3;462(7273):602-8. doi: 10.1038/nature08613.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Avenue, N.E., Grand Rapids, Michigan 49503, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19898420" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*metabolism ; Arabidopsis/genetics/metabolism/*physiology ; Arabidopsis Proteins/*chemistry/genetics/metabolism/*physiology ; Binding Sites ; DNA Mutational Analysis ; *Models, Molecular ; Plants, Genetically Modified ; Protein Binding ; Protein Structure, Tertiary ; Signal Transduction/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-16
    Description: In light of the marked global health impact of tuberculosis (TB), strong focus has been on identifying biosignatures. Gene expression profiles in blood cells identified so far are indicative of a persistent activation of the immune system and chronic inflammatory pathology in active TB. Definition of a biosignature with unique specificity for TB demands that identified profiles can differentiate diseases with similar pathology, like sarcoidosis (SARC). Here, we present a detailed comparison between pulmonary TB and SARC, including whole-blood gene expression profiling, microRNA expression, and multiplex serum analytes. Our analysis reveals that previously disclosed gene expression signatures in TB show highly similar patterns in SARC, with a common up-regulation of proinflammatory pathways and IFN signaling and close similarity to TB-related signatures. microRNA expression also presented a highly similar pattern in both diseases, whereas cytokines in the serum of TB patients revealed a slightly elevated proinflammatory pattern compared with SARC and controls. Our results indicate several differences in expression between the two diseases, with increased metabolic activity and significantly higher antimicrobial defense responses in TB. However, matrix metallopeptidase 14 was identified as the most distinctive marker of SARC. Described communalities as well as unique signatures in blood profiles of two distinct inflammatory pulmonary diseases not only have considerable implications for the design of TB biosignatures and future diagnosis, but they also provide insights into biological processes underlying chronic inflammatory disease entities of different etiology.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...