ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Abstract Observatory‐scale data collection efforts allow unprecedented opportunities for integrative, multidisciplinary investigations in large, complex watersheds which can affect management decisions and policy. Through the National Science Foundation‐funded REACH (REsilience under Accelerated CHange) project, in collaboration with the Intensively Managed Landscapes‐Critical Zone Observatory, we have collected a series of multidisciplinary datasets throughout the Minnesota River Basin in south‐central Minnesota, USA, a 43,400 km2 tributary to the Upper Mississippi River. Post‐glacial incision within the Minnesota River valley created an erosional landscape highly responsive to hydrologic change, allowing for transdisciplinary research into the complex cascade of environmental changes that occur due to hydrology and land use alterations from intensive agricultural management and climate change. Datasets collected include water chemistry and biogeochemical data; geochemical fingerprinting of major sediment sources; high resolution monitoring of river bluff erosion; and repeat channel cross‐sectional and bathymetry data following major floods. The data collection efforts led to development of a series of integrative reduced complexity models that provide deeper insight into how water, sediment, and nutrients route and transform through a large channel network and respond to change. These models represent the culmination of efforts to integrate interdisciplinary datasets and science to gain new insights into watershed‐scale processes in order to advance management and decision making. The purpose of this paper is to present a synthesis of the data sets and models, disseminate them to the community for further research, and identify mechanisms used to expand the temporal and spatial extent of short‐term observatory‐scale data collection efforts.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-10-16
    Description: Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sabo, John L -- Finlay, Jacques C -- Kennedy, Theodore -- Post, David M -- New York, N.Y. -- Science. 2010 Nov 12;330(6006):965-7. doi: 10.1126/science.1196005. Epub 2010 Oct 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Faculty of Ecology, Evolution, and Environmental Sciences, School of Life Sciences, Arizona State University, Post Office Box 874501, Tempe, AZ 85287-4501, USA. John.L.Sabo@asu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20947729" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ecosystem ; Environment ; Fishes ; *Food Chain ; Invertebrates ; North America ; *Rivers ; Water Cycle ; Water Movements
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-07-22
    Description: Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch. However, the same thermokarst lakes can also sequester carbon, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47 +/- 10 grams of carbon per square metre per year; mean +/- standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160 petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears, potentially negating the climate stabilization provided by thermokarst lakes during the late Holocene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anthony, K M Walter -- Zimov, S A -- Grosse, G -- Jones, M C -- Anthony, P M -- Chapin, F S 3rd -- Finlay, J C -- Mack, M C -- Davydov, S -- Frenzel, P -- Frolking, S -- England -- Nature. 2014 Jul 24;511(7510):452-6. doi: 10.1038/nature13560. Epub 2014 Jul 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Water and Environmental Research Center, University of Alaska, Fairbanks, Alaska 99775-5860, USA. ; Northeast Scientific Station, Pacific Institute for Geography, Far-East Branch, Russian Academy of Sciences, Cherskii 678830, Russia. ; 1] Geophysical Institute, University of Alaska, Fairbanks, Alaska 99775-7320, USA [2] Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam 14473, Germany. ; 1] Water and Environmental Research Center, University of Alaska, Fairbanks, Alaska 99775-5860, USA [2] US Geological Survey, Reston, Virginia 20192, USA. ; Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775-7000, USA. ; Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, Minnesota 55108, USA. ; Department of Biology, University of Florida, Gainesville, Florida 32611, USA. ; Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany. ; Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire 03824-3525, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043014" target="_blank"〉PubMed〈/a〉
    Keywords: Alaska ; Atmosphere/chemistry ; Canada ; Carbon Dioxide/analysis ; *Carbon Sequestration ; Climate ; Freezing ; Geologic Sediments/chemistry ; Greenhouse Effect ; History, Ancient ; Lakes/*chemistry ; Methane/analysis ; Siberia ; Soil/chemistry ; Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-10-12
    Description: Human activities have increased the availability of reactive nitrogen in many ecosystems, leading to negative impacts on human health, biodiversity, and water quality. Freshwater ecosystems, including lakes, streams, and wetlands, are a large global sink for reactive nitrogen, but factors that determine the efficacy of freshwater nitrogen removal rates are poorly known. Using a global lake data set, we show that the availability of phosphorus, a limiting nutrient, affects both annual nitrogen removal rate and efficiency. This result indicates that increased phosphorus inputs from human activities have stimulated nitrogen removal processes in many lakes. Recent management-driven reductions in phosphorus availability promote water column accumulation and export of nitrogen from large lakes, an unintended consequence of single-element management that argues for greater control of nitrogen as well as phosphorus sources.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finlay, Jacques C -- Small, Gaston E -- Sterner, Robert W -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):247-50. doi: 10.1126/science.1242575.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA. jfinlay@umn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115440" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Eutrophication ; Humans ; Lakes/*chemistry ; Phosphorus/*adverse effects ; Reactive Nitrogen Species/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-01-06
    Description: The Large-Eddy Simulation (LES) module of the Virtual StreamLab (VSL3D) model is applied to simulate the flow and transport of a conservative tracer in a headwater stream in Minnesota, located in the south Twin Cities metropolitan area. The detailed geometry of the stream reach, which is ∼135 m long, ∼2.5 m wide, and ∼0.15 m deep was surveyed and used as input to the computational model. The detailed geometry and location of large woody debris and bed roughness elements up to ∼0.1 m in size were also surveyed and incorporated in the numerical simulation using the Curvilinear Immersed Boundary (CURVIB) approach employed in VSL3D. The resolution of the simulation, which employs up to a total of 25 million grid nodes to discretize the flow domain, is sufficiently fine to directly account for the effect of large woody debris and small cobbles (on the stream bed) on the flow patterns and transport processes of conservative solutes. Two tracer injection conditions, a pulse and a plateau release, and two cross-sections of measured velocity were used to validate the LES results. The computed results are shown to be in good agreement with the field measurements and tracer concentration time series. To our knowledge, the present study is the first attempt to simulate via high-resolution LES solute transport in a natural stream environment taking into account a range of roughness length-scales spanning an order of magnitude: from small cobbles on the stream bed (∼0.1 m in diameter) to large woody debris up to ∼3 m long.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-07-17
    Description: Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch1, 2, 3, 4. However, the same thermokarst lakes can also sequester carbon5, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47 ± 10 grams of carbon per square metre per year; mean ± standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160 petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears7, 8, 9, potentially negating the climate stabilization provided by thermokarst lakes during the late Holocene.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-05-25
    Description: Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene. However, the same thermokarst lakes can also sequester carbon, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. While methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial time scales. With the help of an atmospheric perturbation model we assess thermokarst-lake carbon feedbacks to climate and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5000 years ago. High rates of Holocene carbon accumulation in lake sediments (47 ± 10 g C m-2 a-1, mean ± SE, n=20 lakes) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160 Pg of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 percent. The carbon in perennially-frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears, potentially negating the climate stabilization provided by thermokarst lakes during the late Holocene.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2012-11-08
    Description: Despite broad recognition of the value of the goods and services provided by nature, existing tools for assessing and valuing ecosystem services often fall short of the needs and expectations of decision makers. Here we address one of the most important missing components in the current ecosystem services toolbox: a...
    Keywords: Sustainability Science
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-10-23
    Print ISSN: 0168-2563
    Electronic ISSN: 1573-515X
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...