ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 2 (2016): e1600445, doi:10.1126/sciadv.1600445.
    Description: Saharan mineral dust exported over the tropical North Atlantic is thought to have significant impacts on regional climate and ecosystems, but limited data exist documenting past changes in long-range dust transport. This data gap limits investigations of the role of Saharan dust in past climate change, in particular during the mid-Holocene, when climate models consistently underestimate the intensification of the West African monsoon documented by paleorecords. We present reconstructions of African dust deposition in sediments from the Bahamas and the tropical North Atlantic spanning the last 23,000 years. Both sites show early and mid-Holocene dust fluxes 40 to 50% lower than recent values and maximum dust fluxes during the deglaciation, demonstrating agreement with records from the northwest African margin. These quantitative estimates of trans-Atlantic dust transport offer important constraints on past changes in dust-related radiative and biogeochemical impacts. Using idealized climate model experiments to investigate the response to reductions in Saharan dust’s radiative forcing over the tropical North Atlantic, we find that small (0.15°C) dust-related increases in regional sea surface temperatures are sufficient to cause significant northward shifts in the Atlantic Intertropical Convergence Zone, increased precipitation in the western Sahel and Sahara, and reductions in easterly and northeasterly winds over dust source regions. Our results suggest that the amplifying feedback of dust on sea surface temperatures and regional climate may be significant and that accurate simulation of dust’s radiative effects is likely essential to improving model representations of past and future precipitation variations in North Africa.
    Description: This study was supported, in part, by NSF awards OCE-1030784 (to D.M. and P.B.d.) and OCE-09277247 (to P.B.d.); NASA grant NN14AP38G (to C. Heald, Massachusetts Institute of Technology), which supports D.A.R.; and the Columbia University Center for Climate and Life. A.F. is supported by the NSF grant AGS-1116885 and the National Oceanic and Atmospheric Administration (NOAA) grant NA14OAR4310277. S.H. is supported by the NASA Earth and Space Sciences Fellowship. We also acknowledge computational support from the NSF/NCAR Yellowstone Supercomputing Center and the Yale University High Performance Computing Center.
    Keywords: Mineral dust ; North Africa ; Paleoclimate ; African Humid Period
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-08
    Description: Intraseasonal wind bursts in the tropical Pacific are believed to affect the evolution and diversity of El Niño events. In particular, the occurrence of two strong westerly wind bursts (WWBs) in early 2014 apparently pushed the ocean–atmosphere system toward a moderate to strong El Niño—potentially an extreme event according to some climate models. However, the event’s progression quickly stalled, and the warming remained very weak throughout the year. Here, we find that the occurrence of an unusually strong basin-wide easterly wind burst (EWB) in June was a key factor that impeded the El Niño development. It was shortly after this EWB that all major Niño indices fell rapidly to near-normal values; a modest growth resumed only later in the year. The easterly burst and the weakness of subsequent WWBs resulted in the persistence of two separate warming centers in the central and eastern equatorial Pacific, suppressing the positive Bjerknes feedback critical for El Niño. Experiments with a climate model with superimposed wind bursts support these conclusions, pointing to inherent limits in El Niño predictability. Furthermore, we show that the spatial structure of the easterly burst matches that of the observed decadal trend in wind stress in the tropical Pacific, suggesting potential links between intraseasonal wind bursts and decadal climate variations.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-28
    Description: Elevated heating of the atmosphere by large plateaus has been argued to influence regional climate in Asia and other regions, but the mechanisms that cause the troposphere to equilibrate at warmer temperatures over elevated terrain are not well understood. This paper quantitatively describes the physics that controls temperatures over elevated terrain in radiative–convective equilibrium (RCE). First, a cloud-system-resolving model (CSRM) is used to simulate RCE states over surfaces with various elevations. Then, a theory for the influence of surface elevation on temperatures in RCE is presented. Together with offline radiative transfer calculations, this theory is used to quantitatively attribute the magnitude of the elevated heating effect to top-of-atmosphere radiative flux changes caused by decreases in longwave absorption, shortwave scattering, and the moist lapse rate that occur as surface pressure drops. Sensitivity functions obtained through these offline calculations suggest that elevated heating is weaker in warmer climates, and additional CSRM simulations support this hypothesis. Under certain circumstances, even the sign of the elevated heating effect can change to produce cooler temperatures at a given pressure level as the surface is lifted in RCE.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-01
    Description: While the Atlantic Meridional Overturning Circulation (AMOC) is projected to slow down under anthropogenic warming, the exact role of the AMOC in future climate change has not been fully quantified. Here, we present a method to stabilize the AMOC intensity in anthropogenic warming experiments by removing fresh water from the subpolar North Atlantic. This method enables us to isolate the AMOC climatic impacts in experiments with a full-physics climate model. Our results show that a weakened AMOC can explain ocean cooling south of Greenland that resembles the North Atlantic warming hole and a reduced Arctic sea ice loss in all seasons with a delay of about 6 years in the emergence of an ice-free Arctic in boreal summer. In the troposphere, a weakened AMOC causes an anomalous cooling band stretching from the lower levels in high latitudes to the upper levels in the tropics and displaces the Northern Hemisphere midlatitude jets poleward.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-07-28
    Description: This study examines global patterns of net ocean surface heat flux changes (ΔQnet) under greenhouse warming in an ocean–atmosphere coupled model based on a heat budget decomposition. The regional structure of ΔQnet is primarily shaped by ocean heat divergence changes (ΔOHD): excessive heat is absorbed by higher-latitude oceans (mainly over the North Atlantic and the Southern Ocean), transported equatorward, and stored in lower-latitude oceans with the rest being released to the tropical atmosphere. The overall global pattern of ΔOHD is primarily due to the circulation change and partially compensated by the passive advection effect, except for the Southern Ocean, which requires further investigations for a more definitive attribution. The mechanisms of North Atlantic surface heat uptake are further explored. In another set of global warming simulations, a perturbation of freshwater removal is imposed over the subpolar North Atlantic to largely offset the CO2-induced changes in the local ocean vertical stratification, barotropic gyre, and the Atlantic meridional overturning circulation (AMOC). Results from the freshwater perturbation experiments suggest that a significant portion of the positive ΔQnet over the North Atlantic under greenhouse warming is caused by the Atlantic circulation changes, perhaps mainly by the slowdown of AMOC, while the passive advection effect can contribute to the regional variations of ΔQnet. Our results imply that ocean circulation changes are critical for shaping global warming pattern and thus hydrological cycle changes.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-01
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-03-22
    Description: An air column under radiative-convective equilibrium is studied here to understand equilibrium climate over different surface elevations. Cloud-resolving model (CRM) simulations show that atmospheric thermal stratifications exhibit similar structures when expressed in sigma coordinates over varying surface elevations under radiative-convective equilibrium. A zero-buoyancy plume model that reproduces CRM results is used to interpret related processes. As surface pressure decreases, decreased pressure on a certain σ level leads to decreases of moist adiabatic temperature lapse rate, which largely cancel the increases of moist adiabatic lapse rate by temperature decreases. Meanwhile, the invariance of convective entrainment/detrainment rates keeps the deviation of environmental temperature lapse rate from moist adiabat approximately invariant, result in similar thermal stratifications under varying surface pressures. A comparison of thermodynamic profiles over the Tibetan Plateau with those over plains in reanalysis confirms the similarity found in CRM simulations. This similarity provides a useful simplification for representing the effects of convection. © 2019. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-07-07
    Description: All else being equal, a given atmospheric pressure level is thought to be warmer over a plateau than over surrounding nonelevated terrain because of orographic “elevated heating.” However, elevated surfaces are also typically brighter due to reduced vegetation and increased ice cover. Here we assess the degree to which surface albedo compensates for orographic elevated heating. We confirm that land surface albedo generally increases with surface elevation in observations. Using a cloud system-resolving model, we show that increased surface albedo strongly compensates for orographic elevated heating in radiative-convective equilibrium. A nonelevated surface with the albedo of modern India would enter a runaway greenhouse regime without ventilation by monsoonal winds, while a surface with the albedo and elevation of Tibet would achieve a cooler radiative-convective equilibrium. Surface albedo changes may thus be just as important as surface elevation changes for the evolution of low-latitude regional climate throughout Earth's history. ©2017. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-03-17
    Description: The influence of eastern tropical Pacific (EPAC; 10°S–10°N, 140°–80°W) wind anomalies on El Niño is investigated using observations and model experiments. Extreme and moderate El Niños exhibit contrasting anomalous wind patterns in the EPAC during the peak and decay phases: westerly wind anomalies during extreme El Niño and southeasterly (southwesterly) wind anomalies south (north) of the equator during moderate El Niño. Experiments with an ocean general circulation model indicate that for extreme El Niño, the eastward intrusion of westerly wind anomalies contributes to the prolonged positive sea surface temperature (SST) anomalies in the eastern equatorial Pacific throughout boreal spring by weakened upwelling and horizontal advection. For moderate El Niño, by contrast, both the meridional and zonal anomalous winds over the EPAC are important in the rapid (slow) SST cooling south (north) of the equator through advection and wind–evaporation–SST feedback. Atmospheric model experiments confirm that these EPAC anomalous winds are primarily forced by tropical SST anomalies. The interplay between wind and SST anomalies suggests positive air–sea feedbacks over EPAC during the decay phase of El Niño. Ocean model results show that the frequency of extreme El Niño increases when EPAC wind anomalies are removed, suggesting the importance of EPAC winds for El Niño diversity.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-16
    Print ISSN: 1758-678X
    Electronic ISSN: 1758-6798
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...