ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth System Science Data 7 (2015): 349–396, doi:10.5194/essd-7-349-2015.
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2005–2014), EFF was 9.0 ± 0.5 GtC yr−1, ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 4.4 ± 0.1 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 3.0 ± 0.8 GtC yr−1. For the year 2014 alone, EFF grew to 9.8 ± 0.5 GtC yr−1, 0.6 % above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2 % yr−1 that took place during 2005–2014. Also, for 2014, ELUC was 1.1 ± 0.5 GtC yr−1, GATM was 3.9 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and SLAND was 4.1 ± 0.9 GtC yr−1. GATM was lower in 2014 compared to the past decade (2005–2014), reflecting a larger SLAND for that year. The global atmospheric CO2 concentration reached 397.15 ± 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in EFF will be near or slightly below zero, with a projection of −0.6 [range of −1.6 to +0.5] %, based on national emissions projections for China and the USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the global economy for the rest of the world. From this projection of EFF and assumed constant ELUC for 2015, cumulative emissions of CO2 will reach about 555 ± 55 GtC (2035 ± 205 GtCO2) for 1870–2015, about 75 % from EFF and 25 % from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2015).
    Description: NERC provided funding to C. Le Quéré, R. Moriarty, and the GCP through their International Opportunities Fund specifically to support this publication (NE/103002X/1). G. P. Peters and R. M. Andrew were supported by the Norwegian Research Council (236296). J. G. Canadell was supported by the Australian Climate Change Science Programme. S. Sitch was supported by EU FP7 for funding through projects LUC4C (GA603542). R. J. Andres was supported by US Department of Energy, Office of Science, Biological and Environmental Research (BER) programmes under US Department of Energy contract DE-AC05- 00OR22725. T. A. Boden was supported by US Department of Energy, Office of Science, Biological and Environmental Research (BER) programmes under US Department of Energy contract DE-AC05-00OR22725. J. I. House was supported by the Leverhulme foundation and the EU FP7 through project LUC4C (GA603542). P. Friedlingstein was supported by the EU FP7 for funding through projects LUC4C (GA603542) and EMBRACE (GA282672). A. Arneth was supported by the EU FP7 for funding through LUC4C (603542), and the Helmholtz foundation and its ATMO programme. D. C. E. Bakker was supported by the EU FP7 for funding through project CARBOCHANGE (284879), the UK Ocean Acidification Research Programme (NE/H017046/1; funded by the Natural Environment Research Council, the Department for Energy and Climate Change and the Department for Environment, Food and Rural Affairs). L. Barbero was supported by NOAA’s Ocean Acidification Program and acknowledges support for this work from the National Aeronautics and Space Administration (NASA) ROSES Carbon Cycle Science under NASA grant 13-CARBON13_2-0080. P. Ciais acknowledges support from the European Research Council through Synergy grant ERC-2013-SyG-610028 “IMBALANCE-P”. M. Fader was supported by the EU FP7 for funding through project LUC4C (GA603542). J. Hauck was supported by the Helmholtz Postdoc Programme (Initiative and Networking Fund of the Helmholtz Association). R. A. Feely and A. J. Sutton were supported by the Climate Observation Division, Climate Program Office, NOAA, US Department of Commerce. A. K. Jain was supported by the US National Science Foundation (NSF AGS 12-43071) the US Department of Energy, Office of Science and BER programmes (DOE DE-SC0006706) and NASA LCLUC programme (NASA NNX14AD94G). E. Kato was supported by the ERTDF (S-10) from the Ministry of Environment, Japan. K. Klein Goldewijk was supported by the Dutch NWO VENI grant no. 863.14.022. S. K. Lauvset was supported by the project “Monitoring ocean acidification in Norwegian waters” from the Norwegian Ministry of Climate and Environment. V. Kitidis was supported by the EU FP7 for funding through project CARBOCHANGE (264879). C. Koven was supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under contract no. DE-AC02-05CH11231 as part of their Regional and Global Climate Modeling Program. P. Landschützer was supported by GEOCarbon. I. T. van der Lann-Luijkx received financial support from OCW/NWO for ICOS-NL and computing time from NWO (SH-060-13). I. D. Lima was supported by the US National Science Foundation (NSF AGS-1048827). N. Metzl was supported by Institut National des Sciences de l’Univers (INSU) and Institut Paul Emile Victor (IPEV) for OISO cruises. D. R. Munro was supported by the US National Science Foundation (NSF PLR-1341647 and NSF AOAS-0944761). J. E. M. S. Nabel was supported by the German Research Foundation’s Emmy Noether Programme (PO1751/1-1) and acknowledges Julia Pongratz and Kim Naudts for their contributions. Y. Nojiri and S. Nakaoka were supported by the Global Environment Research Account for National Institutes (1432) by the Ministry of Environment of Japan. A. Olsen appreciates support from the Norwegian Research Council (SNACS, 229752). F. F. Pérez were supported by BOCATS (CTM2013-41048-P) project co-founded by the Spanish government and the Fondo Europeo de Desarrollo Regional (FEDER). B. Pfeil was supported through the European Union’s Horizon 2020 research and innovation programme AtlantOS under grant agreement no. 633211. D. Pierrot was supported by NOAA through the Climate Observation Division of the Climate Program Office. B. Poulter was supported by the EU FP7 for funding through GEOCarbon. G. Rehder was supported by BMBF (Bundesministerium für Bildung und Forschung) through project ICOS, grant no. 01LK1224D. U. Schuster was supported by NERC UKOARP (NE/H017046/1), NERC RAGANRoCC (NE/K002473/1), the European Space Agency (ESA) OceanFlux Evolution project, and EU FP7 CARBOCHANGE (264879). T. Steinhoff was supported by ICOS-D (BMBF FK 01LK1101C) and EU FP7 for funding through project CARBOCHANGE (264879). J. Schwinger was supported by the Research Council of Norway through project EVA (229771), and acknowledges the Norwegian Metacenter for Computational Science (NOTUR, project nn2980k), and the Norwegian Storage Infrastructure (NorStore, project ns2980k) for supercomputer time and storage resources. T. Takahashi was supported by grants from NOAA and the Comer Education and Science Foundation. B. Tilbrook was supported by the Australian Department of Environment and the Integrated Marine Observing System. B. D. Stocker was supported by the Swiss National Science Foundation and FP7 funding through project EMBRACE (282672). S. van Heuven was supported by the EU FP7 for funding through project CARBOCHANGE (264879). G. R. van der Werf was supported by the European Research Council (280061). A. Wiltshire was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101) and EU FP7 Funding through project LUC4C (603542). S. Zaehle was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (QUINCY; grant agreement no. 647204). ISAM (PI: Atul K. Jain) simulations were carried out at the National Energy Research Scientific Computing Center (NERSC), which is supported by the US DOE under contract DE-AC02-05CH11231.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth System Science Data 6 (2014): 235-263, doi:10.5194/essd-6-235-2014.
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen–carbon interactions). All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003–2012), EFF was 8.6 ± 0.4 GtC yr−1, ELUC 0.9 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.5 ± 0.5 GtC yr−1, and SLAND 2.8 ± 0.8 GtC yr−1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr−1, 2.2% above 2011, reflecting a continued growing trend in these emissions, GATM was 5.1 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and assuming an ELUC of 1.0 ± 0.5 GtC yr−1 (based on the 2001–2010 average), SLAND was 2.7 ± 0.9 GtC yr−1. GATM was high in 2012 compared to the 2003–2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52 ± 0.10 ppm averaged over 2012. We estimate that EFF will increase by 2.1% (1.1–3.1%) to 9.9 ± 0.5 GtC in 2013, 61% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 535 ± 55 GtC for 1870–2013, about 70% from EFF (390 ± 20 GtC) and 30% from ELUC (145 ± 50 GtC).
    Description: We thank the many researchers and funding agencies responsible for the collection and quality control of the data included in SOCAT, and the support of the International Ocean Carbon Coordination Project (IOCCP), the Surface Ocean Lower Atmosphere Study (SOLAS), and the Integrated Marine Biogeochemistry and Ecosystem Research program (IMBER). The UK Natural Environment Research Council (NERC) provided funding to C. Le Quéré, R. Moriarty and the GCP though their International Opportunities Fund specifically to support this publication (project NE/103002X/1). R. J. Andres and T. A. Boden were supported by the US Department of Energy, Office of Science, Biological and Environmental Research (BER) programs under US Department of Energy contract DE-AC05- 00OR22725. G. P. Peters and R. M. Andrews were supported by the Norwegian Research Council (221355). A. Arneth, A. Omar, C. Le Quéré, J. Schwinger, P. Ciais, P. Friedlingstein, P. Regnier, J. Segschneider, S. Sitch and S. Zaehle were supported by the EU FP7 for funding through projects GEOCarbon (283080), COMBINE (226520), CARBOCHANGE (264879), EMBRACE (GA282672), and LUC4C (GA603542). A. Harper was supported by the NERC Joint Weather and Climate Research Programme. A. K. Jain was supported by the US National Science Foundation (NSF AGS 12-43071) the US Department of Energy, Office of Science and BER programs (DOE DE-SC0006706) and NASA LCLUC program (NASA NNX14AD94G). B. D. Stocker was supported by the Swiss National Science Foundation. A. Wiltshire was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). E. Kato was supported by the Environment Research and Technology Development Fund (S-10) of the Ministry of Environment of Japan. J. G. Canadell and M. R. Raupach were supported by the Australian Climate Change Science Program. J. I. House was supported by a Leverhulme Research Fellowship. S. C. Doney was supported by the US National Science Foundation (NSF AGS-1048827).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth System Science Data 7 (2015): 47-85, doi:10.5194/essd-7-47-2015.
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), EFF was 8.9 ± 0.4 GtC yr−1, ELUC 0.9 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.6 ± 0.5 GtC yr−1, and SLAND 2.9 ± 0.8 GtC yr−1. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr−1, 2.3% above 2012, continuing the growth trend in these emissions, ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 5.4 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and SLAND was 2.5 ± 0.9 GtC yr−1. GATM was high in 2013, reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004–2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr−1), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870–2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).
    Description: NERC provided funding to C. Le Quéré, R. Moriarty, and the GCP though their International Opportunities Fund specifically to support this publication (NE/103002X/1), and to U. Schuster through UKOARP (NE/H017046/1). G. P. Peters and R. M. Andrews were supported by the Norwegian Research Council (236296). T. A. Boden was supported by US Department of Energy, Office of Science, Biological and Environmental Research (BER) programmes under US Department of Energy contract DEAC05- 00OR22725. Y. Bozec was supported by Region Bretagne, CG29, and INSU (LEFE/MERMEX) for CARBORHONE cruises. J. G. Canadell and M. R. Raupach were supported by the Australian Climate Change Science Programme. M. Hoppema received ICOSD funding through the German Federal Ministry of Education and Research (BMBF) to the AWI (01 LK 1224I). J. I. House was supported by a Leverhulme Early Career Fellowship. A. K. Jain was supported by the US National Science Foundation (NSF AGS 12-43071) the US Department of Energy, Office of Science, and BER programmes (DOE DE-SC0006706) and the NASA LCLUC programme (NASA NNX14AD94G). E. Kato was supported by the Environment Research and Technology Development Fund (S-10) of the Ministry of Environment of Japan. C. Koven was supported by the Director, Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under contract no. DE-AC02-05CH11231 as part of their Regional and Global Climate Modeling Program. I. D. Lima was supported by the U.S. National Science Foundation (NSF AGS-1048827). N. Metzl was supported by Institut National des Sciences de l’Univers (INSU) and Institut Paul Emile Victor (IPEV) for OISO cruises. A. Olsen was supported by the Centre for Climate Dynamics at the Bjerknes Centre for Climate Research. J. E. Salisbury was supported by grants from NOAA/NASA. T. Steinhoff was supported by ICOS-D (BMBF FK 01LK1101C). B. D. Stocker was supported by the Swiss National Science Foundation and FP7 funding through project EMBRACE (282672). A. J. Sutton was supported by NOAA. T. Takahashi was supported by grants from NOAA and the Comer Education and Science Foundation. B. Tilbrook was supported by the Australian Department of the Environment and the Integrated Marine Observing System. A.Wiltshire was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). P. Ciais,W. Peters, C. Le Quére, P. Regnier, and U. Schuster were supported by the EU FP7 through project GEOCarbon (283080). A. Arneth, P. Ciais, S. Sitch, and A. Wiltshire were supported by COMBINE (226520). V. Kitidis, M. Hoppema, N. Metzl, C. Le Quéré, U. Schuster, J. Schwiger, J. Segschneider, and T. Steinhoff were supported by the EU FP7 through project CARBOCHANGE (264879). A. Arnet, P. Friedlingstein, B. Poulter, and S. Sitch were supported by the EU FP7 through projects LUC4C (GA603542). P. Friedlingstein was also supported by EMBRACE (GA282672). F. Chevallier and G. R. van der Werf were supported by the EU FP7 through project MACC-II (283576).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-12-13
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-03-01
    Print ISSN: 0961-9534
    Electronic ISSN: 1873-2909
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Process Engineering, Biotechnology, Nutrition Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-27
    Electronic ISSN: 1932-6203
    Topics: Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...