ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Chichester : Wiley Blackwell
    Call number: AWI A6-15-0020
    Description / Table of Contents: This book gives a coherent development of the current understanding of the fluid dynamics of the middle latitude atmosphere. lt is primarily aimed at post-graduate and advanced undergraduate level students and does not assume any previous knowledge of fluid mechanics, meteorology or atmospheric science. The book will be an invaluable resource for any quantitative atmospheric scientist who wishes to increase their understanding of the subject. The importance of the rotation of the Earth and the stable stratification of its atmosphere, with their implications for the balance of larger-scale flows, is highlighted throughout. Clearly structured throughout, the first of three themes deals with the development of the basic equations for an atmosphere on a rotating, spherical planet and discusses scale analyses of these equations. The second theme explores the importance of rotation and introduces vorticity and potential vorticity, as well as turbulence. In the third theme, the concepts developed in the first two themes are used to give an understanding of balanced motion in real atmospheric phenomena. lt starts with quasi-geostrophic theory and moves on to linear and nonlinear theories for mid-latitude weather systems and their fronts. The potential vorticity perspective on weather systems is highlighted with a discussion of the Rossby wave propagation and potential vorticity mixing covered in the final chapter.
    Type of Medium: Monograph available for loan
    Pages: XVIII, 408 Seiten , Illustrationen
    ISBN: 9780470795194
    Series Statement: Advancing weather and climate science
    Language: English
    Note: Contents: Series foreword. - Preface. - Select bibliography. - The authors. - 1 Observed flow in the Earth's midlalitudes. - 1.1 Vertical structure. - 1.2 Horizontal structure. - 1.3 Transient activity. - 1.4 Scales of motion. - 1.5 The Norwegian frontal model of cyclones. - Theme 1 Fluid dynamics of the midlatitude atmosphere. - 2 Fluid dynamics in an inertial frame of reference. - 2.1 Definition of fluid. - 2.2 Flow variables and the continuum hypothesis. - 2.3 Kinematics: characterizing fluid flow. - 2.4 Governing physical principles. - 2.5 Lagrangian and Eulerian perspectives. - 2.6 Mass conservation equation. - 2.7 First Law of Thermodynamics. - 2.8 Newton's Second Law of Motion. - 2.9 Bernoulli's Theorem. - 2.10 Heating and water vapour. - 3 Rotating frames of reference. - 3.1 Vectors in a rotating frame of reference. - 3.2 Velocity and Acceleration. - 3.3 The momentum equation in a rotating frame. - 3.4 The centrifugal pseudo-force. - 3.5 The Coriolis pseudo-force. - 3.6 The Taylor-Proudman theorem. - 4 The spherical Earth. - 4.1 Spherical polar coordinates. - 4.2 Scalar equations. - 4.3 The momentum equations. - 4.4 Energy and angular momentum.- 4.5 The shallow atmosphere approximation. - 4.6 The beta effect and the spherical Earth. - 5 Scale analysis and its applications. - 5.1 Principles of scaling methods. - 5.2 The use of a reference atmosphere. - 5.3 The horizontal momentum equations. - 5.4 Natural coordinates, geostrophic and gradient wind balance. - 5.5 Vertical motion. - 5.6 The vertical momentum equation. - 5.7 The mass continuity equation. - 5.8 The thermodynamic energy equation. - 5.9 Scalings for Rossby numbers that are not small. - 6 Alternative vertical coordinates. - 6.1 A general vertical coordinate. - 6.2 Isobaric coordinates. - 6.3 Other pressure-based vertical coordinates. - 6.4 Isentropic coordinates. - 7 Variations of density and the basic equations. - 7.1 Boussinesq approximation. - 7.2 Anelastic approximation. - 7.3 Stratification and gravity waves. - 7.4 Balance, gravity waves and Richardson number. - 7.5 Summary of the basic equation sets. - 7.6 The energy of atmospheric motions. - Theme 2 Rotation in the atmosphere. - 8 Rotation in the atmosphere. - 8.1 The concept of vorticity. - 8.2 The vorticity equation. - 8.3 The vorticity equation for approximate sets of equations. - 8.4 The solenoidal term. - 8.5 The expansion/contraction term. - 8.6 The stretching and tilting terms. - 8.7 Friction and vorticity. - 8.8 The vorticity equation in alternative vertical coordinates. - 8.9 Circulation. - 9 Vorticity and the barotropic vorticity equation. - 9.1 The barotropic vorticity equation. - 9.2 Poisson's equation and vortex interactions. - 9.3 Flow over a shallow hill. - 9.4 Ekman pumping. - 9.5 Rossby waves and the beta plane. - 9.6 Rossby group velocity. - 9.7 Rossby ray tracing. - 9.8 Inflexion point instability. - 10 Potential vorticity. - 10.1 Potential vorticity. - 10.2 Alternative derivations of Ertel's theorem. - 10.3 The principle of invertibility. - 10.4 Shallow water equation potential vorticity. - 11 Turbulence and atmospheric flow. - 11.1 The Reynolds number . - 11.2 Three-dimensional flow at large Reynolds number. - 11.3 Two-dimensional flow at large Reynolds number. - 11.4 Vertical mixing in a stratified fluid. - 11.5 Reynolds stresses. - Theme 3 Balance in atmospheric flow. - 12 Quasi-geostrophic flows. - 12.1 Wind and temperature in balanced flows. - 12.2 The quasi-geostrophic approximation. - 12.3 Quasi-geostrophic potential vorticity. - 12.4 Ertel and quasi-geostrophic potential vorticities. - 13 The omega equation. - 13.1 Vorticity and thermal advection form. - 13.2 Sutcliffe Form. - 13.3 Q-vector form. - 13.4 Ageostrophic flow and the maintenance of balance. - 13.5 Balance and initialization. - 14 Linear theories of baroclinic instability. - 14.1 Qualitative discussion. - 14.2 Stability analysis of a zonal flow. - 14.3 Rossby wave interpretation of the stability conditions. - 14.4 The Eady model. - 14.5 The Charney and other quasi-geostrophic models. - 14.6 More realistic basic states. - 14.7 Initial value problem. - 15 Frontogenesis. - 15.1 Frontal scales. - 15.2 Ageostrophic circulation. - 15.3 Description of frontal collapse. - 15.4 The semi-geostrophic Eady model. - 15.5 The confluence model. - 15.6 Upper-level frontogenesis. - 16 The nonlinear development of baroclinic waves. - 16.1 The nonlinear domain. - 16.2 Semi-geostrophic baroclinic waves. - 16.3 Nonlinear baroclinic waves on realistic jetson the sphere. - 16.4 Eddy transports and zonal mean flow changes. - 16.5 Energetics of baroclinic waves. - 17 The potential vorticity perspective. - 17.1 Setting the scene. - 17.2 Potential vorticity and vertical velocity. - 17.3 Life cycles of some baroclinic waves. - 17.4 Alternative perspectives. - 17.5 Midlatitude blocking. - 17.6 Frictional and heating effects. - 18 Rossby wave propagation and potential vorticity mixing. - 18.1 Rossby wave propagation. - 18.2 Propagation of Rossby waves into the stratosphere. - 18.3 Propagation through a slowly varying medium. - 18.4 The Eliassen-Palm flux and group velocity. - 18.5 Baroclinic life cycles and Rossby waves. - 18.6 Variations of amplitude. - 18.7 Rossby waves and potential vorticity steps. - 18.8 Potential vorticity steps and the Rhines scale. - Appendices. - Appendix A: Notation. - Appendix B: Revision of vectors and vector calculus. - B.1 Vectors and their algebra. - B.2 Products of vectors. - B.3 Scalar fields and the grad operator. - B.4 The divergence and curl operators. - B.5 Gauss' and Stokes' theorems. - B.6 Some useful vector identities. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    London : Academic Press
    Call number: AWI A6-92-0278
    Type of Medium: Monograph available for loan
    Pages: XVI, 397 S. : Abb. ; 24 cm
    Edition: 2nd print. with corr.
    ISBN: 0123566800
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Series available for loan
    Series available for loan
    Reading : European Centre for Medium Range Weather Forecasts
    Associated volumes
    Call number: ZSP-254-19
    In: ERA-40 project report series
    Type of Medium: Series available for loan
    Pages: 191 S.
    Series Statement: ERA-40 project report series 19
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-29
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2018): 1297-1314, doi:10.1175/JCLI-D-17-0286.1.
    Description: The variance of a jet’s position in latitude is found to be related to its average speed: when a jet becomes stronger, its variability in latitude decreases. This relationship is shown to hold for observed midlatitude jets around the world and also across a hierarchy of numerical models. North Atlantic jet variability is shown to be modulated on decadal time scales, with decades of a strong, steady jet being interspersed with decades of a weak, variable jet. These modulations are also related to variations in the basinwide occurrence of high-impact blocking events. A picture emerges of complex multidecadal jet variability in which recent decades do not appear unusual. An underlying barotropic mechanism is proposed to explain this behavior, related to the change in refractive properties of a jet as it strengthens, and the subsequent effect on the distribution of Rossby wave breaking.
    Description: We would like to acknowledge funding from NERC and the Research Council of Norway project jetSTREAM under Grants NE/ L01047X/1 (IMPETUS) and 231716, respectively, for a contribution to the work presented here. EAB is supported in part by the NSF Climate and Large-Scale Dynamics Program under Grant 1545675. Y-OK was supported by the NSF Climate and Large-Scale Dynamics Program under Grant 1355339. KW was supported by the Joint UK BEIS/Defra Met Office Hadley Centre Climate Programme (GA01101). RL was supported by the Met Office and the National Centre for Atmospheric Science.
    Description: 2018-07-29
    Keywords: Atmospheric circulation ; Jets ; North Atlantic Oscillation ; Baroclinic models ; Decadal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The sensitivity of the UK Universities Global Atmospheric Modelling Programme (UGAMP) General Circulation Model (UGCM) to two very different approaches to convective parametrization is described. Comparison is made between a Kuo scheme, which is constrained by large-scale moisture convergence, and a convective-adjustment scheme, which relaxes to observed thermodynamic states. Results from 360-day integrations with perpetual January conditions are used to describe the model's tropical time-mean climate and its variability. Both convection schemes give reasonable simulations of the time-mean climate, but the representation of the main modes of tropical variability is markedly different. The Kuo scheme has much weaker variance, confined to synoptic frequencies near 4 days, and a poor simulation of intraseasonal variability. In contrast, the convective-adjustment scheme has much more transient activity at all time-scales. The various aspects of the two schemes which might explain this difference are discussed. The particular closure on moisture convergence used in this version of the Kuo scheme is identified as being inappropriate.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Royal Meteorology Society, Quarterly Journal (ISSN 0035-9009); 120; 518; p. 881-922
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: The technique of relaxation of the tropical atmosphere towards an analysis in a month-season forecast model has previously been successfully exploited in a number of contexts. Here it is shown that when tropical relaxation is used to investigate the possible origin of the observed anomalies in June–July 2007, a simple dynamical model is able to reproduce the observed component of the pattern of anomalies given by an ensemble of ECMWF forecast runs. Following this result, the simple model is used for a range of experiments on time-scales of relaxation, variables and regions relaxed based on a control model run with equatorial heating in a zonal flow. A theory based on scale analysis for the large-scale tropics is used to interpret the results. Typical relationships between scales are determined from the basic equations, and for a specified diabatic heating a chain of deductions for determining the dependent variables is derived. Different critical time-scales are found for tropical relaxation of different dependent variables to be effective. Vorticity has the longest critical time-scale, typically 1.2 days. For temperature and divergence, the time-scales are 10 hours and 3 hours, respectively. However not all the tropical fields, in particular the vertical motion, are reproduced correctly by the model unless divergence is heavily damped. To obtain the correct extra-tropical fields, it is crucial to have the correct rotational flow in the subtropics to initiate the Rossby wave propagation from there. It is sufficient to relax vorticity or temperature on a time-scale comparable or less than their critical time-scales to obtain this. However if the divergent advection of vorticity is important in the Rossby Wave Source then strong relaxation of divergence is required to accurately represent the tropical forcing of Rossby waves.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-01-01
    Description: Summer rainfall over China has shown decadal variability in the past half century, which has resulted in major north–south shifts in rainfall with important implications for flooding and water resource management. This study has demonstrated how multi-century climate model simulations can be used to explore interdecadal natural variability in the climate system in order to address important questions around recent changes in Chinese summer rainfall, and whether or not anthropogenic climate change is playing a role. Using a 1,000-year simulation of HadCM3 with constant pre-industrial external forcing, the dominant modes of total and interdecadal natural variability in Chinese summer rainfall have been analysed. It has been shown that these modes are comparable in magnitude and in temporal and spatial characteristics to those observed in the latter part of the twentieth century. However, despite 1,000 years of model simulation it has not been possible to demonstrate that these modes are related to similar variations in the global circulation and surface temperature forcing occurring during the latter half of the twentieth century. This may be in part due to model biases. Consequently, recent changes in the spatial distribution of Chinese summer rainfall cannot be attributed solely to natural variability, nor has it been possible to eliminate the likelihood that anthropogenic climate change has been the driving factor. It is more likely that both play a role. ©2013 The Author(s)〈br /〉〈br /〉〈a href="http://doi.org/10.1007/s00382-013-1726-8" target="_blank"〉〈img src="http://bib.telegrafenberg.de/typo3temp/pics/f2f773b55e.png" border="0"〉〈/a〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-08-01
    Description: A high resolution regional atmosphere model is used to investigate the sensitivity of the North Atlantic storm track to the spatial and temporal resolution of the sea surface temperature (SST) data used as a lower boundary condition. The model is run over an unusually large domain covering all of the North Atlantic and Europe, and is shown to produce a very good simulation of the observed storm track structure. The model is forced at the lateral boundaries with 15–20 years of data from the ERA-40 reanalysis, and at the lower boundary by SST data of differing resolution. The impacts of increasing spatial and temporal resolution are assessed separately, and in both cases increasing the resolution leads to subtle, but significant changes in the storm track. In some, but not all cases these changes act to reduce the small storm track biases seen in the model when it is forced with low-resolution SSTs. In addition there are several clear mesoscale responses to increased spatial SST resolution, with surface heat fluxes and convective precipitation increasing by 10–20% along the Gulf Stream SST gradient. ©2009 Springer-Verlag〈br /〉〈br /〉〈a href="http://doi.org/10.1007/s00382-009-0554-3" target="_blank"〉〈img src="http://bib.telegrafenberg.de/typo3temp/pics/f2f773b55e.png" border="0"〉〈/a〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...