ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Lithos 112 (2009): 83-92, doi:10.1016/j.lithos.2009.06.011.
    Description: Southern Africa, particularly the Kaapvaal Craton, is one of the world’s best natural laboratories for studying the lithospheric mantle given the wealth of xenolith and seismic data that exist for it. The Southern African Magnetotelluric Experiment (SAMTEX) was launched to complement these databases and provide further constraints on physical parameters and conditions by obtaining information about electrical conductivity variations laterally and with depth. Initially it was planned to acquire magnetotelluric data on profiles spatially coincident with the Kaapvaal Seismic Experiment, however with the addition of seven more partners to the original four through the course of the experiment, SAMTEX was enlarged from two to four phases of acquisition, and extended to cover much of Botswana and Namibia. The complete SAMTEX dataset now comprises MT data from over 675 distinct locations in an area of over one million square kilometres, making SAMTEX the largest regional-scale MT experiment conducted to date. Preliminary images of electrical resistivity and electrical resistivity anisotropy at 100 km and 200 km, constructed through approximate one-dimensional methods, map resistive regions spatially correlated with the Kaapvaal, Zimbabwe and Angola Cratons, and more conductive regions spatially associated with the neighbouring mobile belts and the Rehoboth Terrain. Known diamondiferous kimberlites occur primarily on the boundaries between the resistive or isotropic regions and conductive or anisotropic regions. Comparisons between the resistivity image maps and seismic velocities from models constructed through surface wave and body wave tomography show spatial correlations between high velocity regions that are resistive, and low velocity regions that are conductive. In particular, the electrical resistivity of the sub-continental lithospheric mantle of the Kaapvaal Craton is determined by its bulk parameters, so is controlled by a bulk matrix property, namely temperature, and to a lesser degree by iron content and composition, and is not controlled by contributions from interconnected conducting minor phases, such as graphite, sulphides, iron oxides, hydrous minerals, etc. This makes quantitative correlations between velocity and resistivity valid, and a robust regression between the two gives an approximate relationship of Vs [m/s] = 0.045*log(resistivity [ohm.m]).
    Description: We especially thank our academic funding sponsors; the Continental Dynamics programme of the U.S. National Science Foundation, the South African Department of Science and Technology, and Science Foundation Ireland.
    Keywords: Sub-continental lithospheric mantle ; Cratonic lithosphere ; Electrical conductivity ; Kaapvaal Craton ; Zimbabwe Craton ; Diamond exploration
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: A catalogue of precisely located micro-seismicity is fundamental for investigating seismicity and rock physical properties in active tectonic and volcanic regions and for the definition of a ‘baseline’ seismicity, required for a safe future exploitation of georesource areas. In this study, we produce the first manually revised catalogue of micro-seismicity for Co. Donegal region (Ireland), an area of about 50K M2 of on-going deformation, aimed at localizing natural micro-seismic events occurred between 2012 and 2015. We develop a stochastic method based on a Markov chain Monte Carlo (McMC) sampling approach to compute earthquake hypocentral location parameters. Our results indicates that micro-seismicity is present with magnitudes lower than 2 (the highest magnitude is 2.8).The recorded seismicity is almost clustered along previously mapped NE-SW trending, steeply dipping faults and confined within the upper crust (focal depth less than 10 km). We also recorded anthropogenic seismicity mostly related to quarries' activity in the study area.
    Description: Published
    Description: 62-76
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-01
    Description: The systematic biases and errors associated with gravity data in Ireland and Northern Ireland and the conversion of gravity to a consistent and unified system are analyzed. The gravity data in Ireland and Northern Ireland are given in different coordinate systems (Irish Grid and Irish Transverse Mercator), different gravity base stations (Dunsink and Cambridge), and different vertical datums (Malin Head and Belfast tide gauge). The conversion of the gravity data to a consistent system, which refers to unified coordinates, base station, and vertical datum, is essential in geophysics and geodesy, especially in geoid determination. A new standardized and unified data format is computed and proposed for the supply of gravity data for Ireland and Northern Ireland to minimize the potential of misinterpreting the data. As part of this study, simple Bouguer and free-air gravity anomaly maps are produced for Ireland and Northern Ireland to give an example of how to integrate the data.
    Print ISSN: 1070-485X
    Electronic ISSN: 1938-3789
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-23
    Description: Summary The classical Backus-Gilbert method seeks localized Earth-structure averages at the shortest length scales possible, given a dataset, data errors, and a threshold for acceptable model errors. The resolving length at a point is the width of the local averaging kernel, and the optimal averaging kernel is the narrowest one such that the model error is below a specified level. This approach is well suited for seismic tomography, which maps three-dimensional Earth structure using large sets of seismic measurements. The continual measurement-error decreases and data-redundancy increases have reduced the impact of random errors on tomographic models. Systematic errors, however, are resistant to data redundancy and their effect on the model is difficult to predict. Here, we develop a method for finding the optimal resolving length at every point, implementing it for surface-wave tomography. As in the Backus-Gilbert method, every solution at a point results from an entire-system inversion, and the model error is reduced by increasing the model-parameter averaging. The key advantage of our method stems from its direct, empirical evaluation of the posterior model error at a point. We first measure inter-station phase velocities at simultaneously recording station pairs and compute phase-velocity maps at densely, logarithmically spaced periods. Numerous versions of the maps with varying smoothness are then computed, ranging from very rough to very smooth. Phase-velocity curves extracted from the maps at every point can be inverted for shear-velocity (VS) profiles. As we show, errors in these phase-velocity curves increase nearly monotonically with the map roughness. We evaluate the error by isolating the roughness of the phase-velocity curve that cannot be explained by any Earth structure and determine the optimal resolving length at a point such that the error of the local phase-velocity curve is below a threshold. A 3D VS model is then computed by the inversion of the composite phase-velocity maps with an optimal resolution at every point. The estimated optimal resolution shows smooth lateral variations, confirming the robustness of the procedure. Importantly, the optimal resolving length does not scale with the density of the data coverage: some of the best-sampled locations display relatively low lateral resolution, probably due to systematic errors in the data. We apply the method to image the lithosphere and underlying mantle beneath Ireland and Britain. Our very large dataset was created using new data from Ireland Array, the Irish National Seismic Network, the UK Seismograph Network, and other deployments. A total of 11238 inter-station dispersion curves, spanning a very broad total period range (4–500 s), yield unprecedented data coverage of the area and provide fine regional resolution from the crust to the deep asthenosphere. The lateral resolution of the 3D model is computed explicitly and varies from 39 km in central Ireland to over 800 km at the edges of the area, where the data coverage declines. Our tomography reveals pronounced, previously unknown variations in the lithospheric thickness beneath Ireland and Britain, with implications for their Caledonian assembly and for the mechanisms of the British Tertiary Igneous Province magmatism.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...