ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hogan, Kelly A; Dowdeswell, Julian A; Noormets, R; Evans, Jeffrey; Ó Cofaigh, Colm; Jakobsson, Martin (2010): Submarine landforms and ice-sheet flow in the Kvitøya Trough, northwestern Barents Sea. Quaternary Science Reviews, 29(25-26), 3545-3562, https://doi.org/10.1016/j.quascirev.2010.08.015
    Publication Date: 2023-12-13
    Description: High-resolution geophysical and sediment core data are used to investigate the pattern and dynamics of former ice flow in Kvitøya Trough, northwestern Barents Sea. A new swath-bathymetric dataset identifies three types of submarine landform in the study area (streamlined landforms, meltwater channels and cavities, iceberg scours). Subglacially produced streamlined landforms provide a record of ice flow through Kvitøya Trough during the last glaciation. Flow directions are inferred from the orientations of streamlined landforms (drumlins, crag-and-tail features). Ice flowed northward for at least 135 km from an ice divide at the southern end of Kvitøya Trough. A large channel-cavity system incised into bedrock in the southern trough indicates that subglacial meltwater was present at the former ice-sheet base. Modest landform elongation ratios and a lack of mega-scale glacial lineations suggest that, although ice in Kvitøya Trough was melting at the bed and flowed faster than the likely thin and cold-based ice on adjacent banks, a major ice stream probably did not occupy the trough. Retreat was relatively rapid after 14-13.5 14C kyr B.P. and probably progressed via ice sheet-bed decoupling in response to rising sea level. There is little evidence for still stands during ice retreat or of ice-proximal deglacial sediments. Relict iceberg scours in present-day water depths of more than 350 m in the northern trough indicate that calving was an important mass loss mechanism during retreat.
    Keywords: Age, 14C AMS; Age, dated; Age, dated material; Age, dated standard deviation; Core; DEPTH, sediment/rock; Event label; GC; Gravity corer; International Polar Year (2007-2008); IPY; James Clark Ross; JR142; JR142-GC10; JR142-GC11; JR20060728; Latitude of event; Longitude of event; Svalbard Shelf
    Type: Dataset
    Format: text/tab-separated-values, 12 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-20
    Description: The International Bathymetric Chart of the Southern Ocean Version 2 (IBCSO v2) is a digital bathymetric model (DBM) for the area south of 50° S with special emphasis on the bathymetry of the Southern Ocean. IBCSO v2 has a resolution of 500 m × 500 m in a Polar Stereographic projection (EPSG: 9354). The total data coverage of the seafloor is 23.79% with a multibeam-only data coverage of 22.32%. The remaining 1.47% include singlebeam and other data. IBCSO v2 is the most authoritative seafloor map of the area south of 50°S. IBCSO is a regional mapping project of the General Bathymetric Chart of the Ocean (GEBCO) supported by the Nippon Foundation – GEBCO Seabed 2030 Project. GEBCO is a project under the auspices of the International Hydrographic Organization (IHO) and the Intergovernmental Oceanographic Commission (IOC) with the goal to produce the authoritative map of the world's oceans. The IBCSO Project is also an integral part of the Antarctic research community and an expert group of the Scientific Committee on Antarctic Research (SCAR). For further information about the IBCSO Project, please visit http://www.ibcso.org.
    Keywords: Antarctica; AWI_GeoPhy; Binary Object; Binary Object (File Size); Description; IBCSO_v2_extent; Image; Image (File Size); Marine Geophysics @ AWI; Projection; Seabed2030; The Nippon Foundation - GEBCO Seabed 2030 Project
    Type: Dataset
    Format: text/tab-separated-values, 50 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-12-01
    Description: Greenland's bed topography is a primary control on ice flow, grounding line migration, calving dynamics and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic Water (AW) that rapidly melts and undercuts Greenland's marine-terminating glaciers. Here, we present a new compilation of Greenland bed topography that assimilates seafloor bathymetry and ice thickness data through a mass conservation (MC) approach. A new 150-m horizontal resolution bed topography/bathymetric map of Greenland is constructed with seamless transitions at the ice/ocean interface, yielding major improvements over previous datasets, particularly in the marine-terminating sectors of northwest and southeast Greenland. Our map reveals the total sea level potential of the Greenland Ice Sheet is 7.42±0.05 m, which is 7 cm greater than previous estimates. Furthermore, it explains recent calving front response of numerous outlet glaciers and reveals new pathways by which AW can access glaciers with marine-based basins, thereby highlighting sectors of Greenland that are most vulnerable to future oceanic forcing.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-08-10
    Description: The majority of glaciers draining the Antarctic Peninsula Ice Sheet are thinning and retreating rapidly1. It is widely understood that these changes are driven by both a warming ocean and atmosphere. However, there are other mechanisms, including pinning points created by bathymetric highs and a reverse bed gradient, that are thought to have an important control on ice stream behaviour (Weertman, 1974; Jamieson et al., 2012). Our understanding of the interplay between these mechanisms and time-scales over which they are important is currently limited in time to the advent of satellite monitoring. By reconstructing the cause and style of ice stream retreat following the Last Glacial Maximum (LGM; 25-19 ka BP), it is possible to gain a greater insight into the mechanisms which drive glacier retreat (Ó Cofaigh et al., 2014). Sedimentary sequences deposited during the LGM and the subsequent deglaciation on polar continental shelves, provide an important archive of past changes (Ó Cofaigh et al., 2014). Previous studies have typically identified three sediment facies assemblages; sub-glacial, transitional and open marine (Ó Cofaigh et al., 2014; Domack et al., 1988; Smith et al., 2011). Transitional sediment facies are deposited at the grounding line and are often targeted for radiocarbon dating, as they represent the onset of glaciomarine sedimentation following the retreat of grounded ice (Domack et al., 1988; Smith et al., 2014; Heroy et al., 1996). Despite the development of depositional models to help explain the processes occurring at grounding lines (Powell et al., 1995 and 1996), there is still significant uncertainty about the temporal and spatial variations in grounding line sedimentation along and across a palaeo-ice stream trough. Here we use a multi-proxy approach (water content, shear strength, magnetic susceptibility, density, contents of biogenic opal, Total Organic Carbon and CaCO3, grain size distribution and X-radiographs) on marine sediment cores recovered from the Anvers-Hugo Palaeo-Ice Stream Trough (AHT), western Antarctic Peninsula shelf, to identify variability in transitional sediment facies deposited along and across the trough. We discuss possible controls on the variability in transitional sediment facies and how this is related to the rate and style of ice stream retreat. Our data reveal systematic variability in the types and volume of transitional sediments deposited during the last deglaciation of AHT. A detailed analysis of the transitional sediment facies shows that this variability reflects different phases of ice stream behaviour. Large volumes of ice proximal sediment facies recovered seawards of grounding zone wedges are indicative of episodes of grounding line still-stands. Re-advances of the grounding line, concurrent with a shallowing of the reverse bed gradient and a narrowing of the trough, appear to have occurred during the final stages of deglaciation. This is indicated by interlaminated ice-proximal and ice-distal sediment facies within inner shelf cores. Transitional sediment variability additionally captures the evolution of the ice stream during deglaciation, including the formation of a small ice shelf on the inner shelf. Keywords: Antarctic Peninsula, Last Glacial Maximum, ice stream, sediment cores References Cook, A. J., Holland, P. R., Meredith, M. P., Murray, T., Luckman, A. & Vaughan, D. G, 2016. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science, 353, 283-286. Weertman, J, 1974. Stability of the Junction of an Ice Sheet and an Ice Shelf. Journal of Glaciology, 13, 3-11. Jamieson, S. S. R., Vieli, A., Livingstone, S. J., Cofaigh, C. O., Stokes, C., Hillenbrand, C.-D. & Dowdeswell, J. A, 2012. Ice-stream stability on a reverse bed slope. Nature Geoscience, 5, 799-802. Ó Cofaigh, C., Davies, B. J., Livingstone, S. J., Smith, J. A., Johnson, J. S., Hocking, E. P., Hodgson, D. A., Anderson, J. B., Bentley, M. J., Canals, M., Domack, E., Dowdeswell, J. A., Evans, J., Glasser, N. F., Hillenbrand, C.-D., Larter, R. D., Roberts, S. J. & Simms, A. R, 2014. Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum. Quaternary Science Reviews, 100, 87-110. Domack, E. W. & Harris, P. T, 1998. A new depositional model for ice shelves, based upon sediment cores from the Ross Sea and the Mac. Robertson shelf, Antarctica. Annals of Glaciology, 27, 281-284. Smith, J. A., Hillenbrand, C.-D., Kuhn, G., Larter, R. D., Graham, A. G. C., Ehrmann, W., Moreton, S. G. & Forwick, M, 2011. Deglacial history of the West Antarctic Ice Sheet in the western Amundsen Sea Embayment. Quaternary Science Reviews, 30, 488-505. Smith, J. A., Hillenbrand, C.-D., Kuhn, G., Klages, J. P., Graham, A. G. C., Larter, R. D., Ehrmann, W., Moreton, S. G., Wiers, S. & Frederichs, T, 2014. New constraints on the timing of West Antarctic Ice Sheet retreat in the eastern Amundsen Sea since the Last Glacial Maximum. Global and Planetary Change, 122, 224-237. Heroy, D. C. & Anderson, J. B, 1996. Radiocarbon constraints on Antarctic Peninsula Ice Sheet retreat following the Last Glacial Maximum (LGM). Quaternary Science Reviews, 26, 3286-3297. Powell, R. D., Dawber, M., McInnes, J. N. & Pyne, A. R, 1996. Observations of the Grounding-line Area at a Floating Glacier Terminus. Annals of Glaciology, 22, 217-223. 1Powell, R. D. & Domack, E, 1995. Modern Glacimarine Environments. In: Glacial Environments, Volume 1 (ed. J Menzies). Butterworth-Heinemann, 445-486.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-08-10
    Description: We will present new multibeam bathymetry data that make the Anvers-Hugo Trough west of the Antarctic Peninsula one of the most completely surveyed palaeo-ice stream pathways in Antarctica. We interpret landforms revealed by these data as indicating that subglacial water availability played an important role in facilitating ice stream flow in the trough during late Quaternary glacial periods. Specifically, we observe a set of northward-shoaling valleys that are eroded into the upstream edge of a sedimentary basin, extend northwards from a zone containing landforms typical of erosion by subglacial water flow, and coincide spatially with the onset of mega-scale glacial lineations. Water was likely supplied to the ice stream bed episodically as a result of outbursts from a subglacial lake previously hypothesized to have been located in the Palmer Deep basin on the inner continental shelf. In a palaeo-ice stream confluence area, close juxtaposition of mega-scale glacial lineations with landforms that are characteristic of slow, dry-based ice flow, suggests that water availability was also an important control on the lateral extent of these palaeo-ice streams. These interpretations are consistent with the hypothesis that subglacial lakes or areas of elevated geothermal heat flux play a critical role in the onset of many large ice streams. The interpretations also have implications for the dynamic behaviour of the Anvers-Hugo Trough palaeo-ice stream and, potentially, of several other Antarctic palaeo-ice streams. Keywords: multibeam bathymetry, ice stream, subglacial water, landform
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-08-12
    Description: It is becoming increasingly apparent that bathymetry plays a crucial role in determining the behavior of marine-terminating glaciers. This is because variations in the shape of the bed can produce both pinning points where glaciers (or their floating tongues) can ground and stabilize, as well as pathways for warm waters to move across the shelf and access the grounding line. Ahead of the first ITGC field season we present the existing state of knowledge about the bed in front of Thwaites Glacier (TG). We have compiled existing multibeam-bathymetric datasets from the UK, the USA and international partners (Korea, Germany) to produce a high-resolution grid (50-m cells) for the area. From this grid we identify possible pathways for warm Circumpolar Deep Water to the TG grounding line, a topographic high – as shallow as 130 m in places - that likely acted as a pinning point and is less than 18 km from the current eastern ice-shelf margin, and landforms indicative of the past behavior of the glacier (e.g. meltwater channels and basins, streamlined landforms). This exercise also highlights important data gaps to target for surveying in 2019, including for example, the area left vacant by the calving of the B-22 iceberg. Secondly, we explore existing sub-bottom and seismic-reflection profiles from the Amundsen Sea Embayment to investigate the nature of the substrate in front of TG. Unlithified sediment cover is generally thin (〈5 m) over scoured crystalline bedrock but thickens to up to 40 m in basins. We discuss potential coring targets close to pathways for warm water incursions, and former stability points including the possibility of unknown basins in front of TG.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-09-27
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-05-05
    Description: The coastal bathymetry of Thwaites Glacier (TG) is poorly known yet nearshore sea-floor highs have the potential to act as pinning points for floating ice shelves, or to block warm water incursions to the grounding line. In contrast, deeper areas control warm water routing. Here, we present more than 2000 km2 of new multibeam echo-sounder data (MBES) acquired offshore TG during the first cruise of the International Thwaites Glacier Collaboration (ITGC) project on the RV/IB Nathaniel B. Palmer (NBP19-02) in February-March 2019. Beyond TG, the bathymetry is dominated by a 〉1200 m deep, structurally-controlled trough and discontinuous ridge, on which the Eastern Ice Shelf is pinned. The geometry and composition of the ridge varies spatially with some sea-floor highs having distinctive flat-topped morphologies produced as their tops were planed-off by erosion at the base of the seaward-moving Thwaites Ice Shelf. In addition, submarine landform evidence indicates at least some unconsolidated sediment cover on the highs, as well as in the troughs that separate them. Knowing that this offshore area of ridges and troughs is a former bed for TG, we also used a novel spectral approach and existing ice-flow theory to investigate bed roughness and basal drag over the newly-revealed offshore topography. We show that the sea-floor bathymetry is a good analogue for extant bed areas of TG and that ice-sheet retreat over the sea-floor troughs and ridges would have been affected by high basal drag similar to that acting in the grounding zone today. Comparisons of the new MBES data with existing regional compilations show that high-frequency (finer than 5 km) bathymetric variability beyond Antarctic ice shelves can only be resolved by observations such as MBES and that without these data calculations of the oceanic heat flux may be significantly underestimated. This work supports the findings of recent numerical ice-sheet and ocean modelling studies that recognise the need for accurate and high-resolution bathymetry to determine warm water routing to the grounding zone and, ultimately, for predicting glacier retreat behaviour.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-09-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-12-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...