ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-08
    Description: A central aspect of coastal biogeochemistry is to determine how nutrients, lithogenic- and organic matter are distributed and transformed within coastal and estuarine environments. Analyses of the spatio-temporal changes of total suspended matter (TSM) concentration indicate strong and variable linkages between intertidal fringes and pelagic regions. In particular, knowledge about the organic fraction of TSM provides insight to how biogenic and lithogenic particulate matter are distributed in suspension. In our study we take advantage of a set of over 3000 in situ Loss on Ignition (LoI) data from the Southern North Sea that represent fractions of particulate organic matter (POM) relative to TSM (LoI $\equiv$ POM:TSM). We introduce a parameterization (POM-TSM model) that distinguishes between two POM fractions incorporated in TSM. One fraction is described in association with mineral particles. The other represents a seasonally varying fresh pool of POM. The performance of the POM-TSM model is tested against data derived from MERIS/ENVISAT-TSM products of the German Bight. Our analysis of remote sensing data exhibits specific qualitative features of TSM that can be attributed to distinct coastal zones. Most interestingly, a transition zone between the Wadden Sea and seasonally stratified regions of the Southern North Sea is identified where mineral associated POM appears in concentrations comparable to those of freshly produced POM. We will discuss how this transition is indicative for a zone of effective particle interaction and sedimentation.The dimension of this transition zone varies between seasons and with location. Our proposed POM-TSM model is generic and can be calibrated against in situ data of other coastal regions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0365-9631
    Keywords: Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: Estuary-type circulation is a residual circulation in coastal systems with horizontal density gradients. It drives the accumulation of suspended particulate matter in coastal embayments where density gradients are sustained by some freshwater inflow from rivers. Ebenhöh et al. (Ecol Model 174(3):241–252, 2004) found that shallow water depth can explain nutrient gradients becoming established towards the coast even in the absence of river inflow. The present study follows their concept and investigates the characteristic transport of organic matter towards the coast based on idealised scenarios whereby an estuary-type circulation is maintained by surface freshwater fluxes and pronounced shoaling towards the coast. A coupled hydrodynamical and biogeochemical model is used to simulate the dynamics of nutrient gradients and to derive budgets of organic matter flux for a coastal transect. Horizontal nutrient gradients are considered only in terms of tidal asymmetries of suspended matter transport. The results show that the accumulation of organic matter near the coast is not only highly sensitive to variations in the sinking velocity of suspended matter but is also noticeably enhanced by an increase in precipitation. This scenario is comparable with North Sea conditions. By contrast, horizontal nutrient gradients would be reversed in the case of evaporation-dominated inverse estuaries (cf. reverse gradients of nutrient and organic matter concentrations). Credible coastal nutrient budget calculations are required for resolving trends in eutrophication. For tidal systems, the present results suggest that these calculations require an explicit consideration of freshwater flux and asymmetries in tidal mixing. In the present case, the nutrient budget for the vertically mixed zone also indicates carbon pumping from the shelf sea towards the coast from as far offshore as 25 km.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-08-01
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-06-20
    Description: Shelf and coastal sea processes extend from the atmosphere through the water column and into the sea bed. These processes are driven by physical, chemical, and biological interactions at local scales, and they are influenced by transport and cross strong spatial gradients. The linkages between domains and many different processes are not adequately described in current model systems. Their limited integration level in part reflects lacking modularity and flexibility; this shortcoming hinders the exchange of data and model components and has historically imposed supremacy of specific physical driver models. We here present the Modular System for Shelves and Coasts (MOSSCO, http://www.mossco.de), a novel domain and process coupling system tailored – but not limited – to the coupling challenges of and applications in the coastal ocean. MOSSCO builds on the existing coupling technology Earth System Modeling Framework and on the Framework for Aquatic Biogeochemical Models, thereby creating a unique level of modularity in both domain and process coupling; the new framework adds rich metadata, flexible scheduling, configurations that allow several tens of models to be coupled, and tested setups for coastal coupled applications. That way, MOSSCO addresses the technology needs of a growing marine coastal Earth System community that encompasses very different disciplines, numerical tools, and research questions.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-03-30
    Description: Ecosystem models often rely on heuristic descriptions of autotroph growth that fail to reproduce various stationary and dynamic states of phytoplankton cellular composition observed in laboratory experiments. Here, we present the integration of an advanced phytoplankton growth model within a coupled 3-dimensional physical-biogeochemical model, and the implementation of the model system to the Southern North Sea (SNS) defined on a relatively high resolution (~ 1.5–4.5 km) curvilinear grid. The autotrophic growth model, recently introduced by Wirtz and Kerimoglu (2016), is built up on a set of novel concepts for the allocation of internal resources and operation of cellular metabolism. The coupled model system consists of the general estuarine transport model (GETM) as the hydrodynamical driver, a lower trophic level model and a simple sediment diagenesis model. We force the model system with realistic atmospheric and riverine fluxes, background turbidity caused by suspended particulate matter and open ocean boundary conditions. For a simulation for the period 2000–2010, we show that the model system satisfactorily reproduces the physical and biogeochemical states of the system, as inferred from comparisons against data from long-term monitoring stations, sparse measurements, continuous transects, and remote sensing data. In particular, the model shows high skill both in coastal and off shore waters, and captures the steep gradients in nutrient and chlorophyll concentrations observed prevalently across the coastal transition zone. We show that the cellular chlorophyll to carbon ratio show significant seasonal and lateral variability, the latter amplifying the steepness of the transitional chlorophyll gradient, thus, pointing to the relevance of resolving the physiological acclimation processes for an accurate description of biogeochemical fluxes.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-10-12
    Description: Ecosystem models often rely on heuristic descriptions of autotrophic growth that fail to reproduce various stationary and dynamic states of phytoplankton cellular composition observed in laboratory experiments. Here, we present the integration of an advanced phytoplankton growth model within a coupled three-dimensional physical–biogeochemical model and the application of the model system to the southern North Sea (SNS) defined on a relatively high resolution (∼1.5–4.5km) curvilinear grid. The autotrophic growth model, recently introduced by Wirtz and Kerimoglu (2016), is based on a set of novel concepts for the allocation of internal resources and operation of cellular metabolism. The coupled model system consists of the General Estuarine Transport Model (GETM) as the hydrodynamical driver, a lower-trophic-level model and a simple sediment diagenesis model. We force the model system with realistic atmospheric and riverine fluxes, background turbidity caused by suspended particulate matter (SPM) and open ocean boundary conditions. For a simulation for the period 2000–2010, we show that the model system satisfactorily reproduces the physical and biogeochemical states of the system within the German Bight characterized by steep salinity; nutrient and chlorophyll (Chl) gradients, as inferred from comparisons against observation data from long-term monitoring stations; sparse in situ measurements; continuous transects; and satellites. The model also displays skill in capturing the formation of thin chlorophyll layers at the pycnocline, which is frequently observed within the stratified regions during summer. A sensitivity analysis reveals that the vertical distributions of phytoplankton concentrations estimated by the model can be qualitatively sensitive to the description of the light climate and dependence of sinking rates on the internal nutrient reserves. A non-acclimative (fixed-physiology) version of the model predicted entirely different vertical profiles, suggesting that accounting for physiological flexibility might be relevant for a consistent representation of the vertical distribution of phytoplankton biomass. Our results point to significant variability in the cellular chlorophyll-to-carbon ratio (Chl:C) across seasons and the coastal to offshore transition. Up to 3-fold-higher Chl:C at the coastal areas in comparison to those at the offshore areas contribute to the steepness of the chlorophyll gradient. The model also predicts much higher phytoplankton concentrations at the coastal areas in comparison to its non-acclimative equivalent. Hence, findings of this study provide evidence for the relevance of physiological flexibility, here reflected by spatial and seasonal variations in Chl:C, for a realistic description of biogeochemical fluxes, particularly in the environments displaying strong resource gradients.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-03-12
    Description: Shelf and coastal sea processes extend from the atmosphere through the water column and into the seabed. These processes reflect intimate interactions between physical, chemical, and biological states on multiple scales. As a consequence, coastal system modelling requires a high and flexible degree of process and domain integration; this has so far hardly been achieved by current model systems. The lack of modularity and flexibility in integrated models hinders the exchange of data and model components and has historically imposed the supremacy of specific physical driver models. We present the Modular System for Shelves and Coasts (MOSSCO; http://www.mossco.de), a novel domain and process coupling system tailored but not limited to the coupling challenges of and applications in the coastal ocean. MOSSCO builds on the Earth System Modeling Framework (ESMF) and on the Framework for Aquatic Biogeochemical Models (FABM). It goes beyond existing technologies by creating a unique level of modularity in both domain and process coupling, including a clear separation of component and basic model interfaces, flexible scheduling of several tens of models, and facilitation of iterative development at the lab and the station and on the coastal ocean scale. MOSSCO is rich in metadata and its concepts are also applicable outside the coastal domain. For coastal modelling, it contains dozens of example coupling configurations and tested set-ups for coupled applications. Thus, MOSSCO addresses the technology needs of a growing marine coastal Earth system community that encompasses very different disciplines, numerical tools, and research questions.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-10
    Description: The study addresses the nitrogen cycling in Elbe estuary. Observations of salinity, nutrients and oxygen from moored stations, ship casts and helicopter surveys are presented. Observations are complemented by simulations obtained from a coupled physical-biogeochemical 3D unstructured model, applied for the first time to the estuarine environment. Model simulations reproduce the temporal variability of nutrients and oxygen along the estuarine salinity gradient. Both, observations and model results, demonstrate mostly conservative mixing of nitrate and non-conservative behavior of ammonium. Model hind-casts of the years 2012 and 2013 provide a detailed reconstruction of nitrogen recycling with ammonium appearing as the key species of the remineralisation process. Estuarine turnover processes are fueled by inputs of diatoms and organic nitrogen at the tidal weir with intense primary production manifest in the shallow river section downstream of the weir. The harbor area is the hot spot of heterotrophic decay associated with growth of meso-zooplankton, sedimentation of degradable material, remineralisation, oxygen depletion, denitrification and ammonium production. In the harbor, biochemistry shows strong vertical gradients while hydrodynamics demonstrate connectivity between the main channel and the harbor. At the estuary bed nitrogen is deposited during spring and early summer. Resuspension leads to nearly closed budget by the end of the year. During the Elbe flood in June 2013, estuarine biogeochemistry is significantly disturbed with the harbor being deactivated as hot spot of heterotrophic decay. Plankton and organic matter are flushed towards the outer estuary which in consequence sees high abundance of grazers, oxygen depletion and elevated release of ammonium.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...