ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1090-6487
    Keywords: 52.50.Jm ; 52.25.Jm
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A new approach for investigation of the generation of fast ions and hot electrons inside the same plasma volume in laser-produced plasmas is proposed. It is based on the spectroscopic observation of line radiation from singly and doubly excited levels with simultaneous high spectral and spatial resolution. The experimental results demonstrate the observation of fast ions from highly charged target material inside the plasma volume and suggest that the generally accepted scaling relations are seriously invalid under certain conditions. Even at rather modest intensities ions with energies of several MeV are observed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 4426-4455 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: This paper presents one- and two-dimensional computer simulations of the hydrodynamic response of solid cylindrical targets made of different materials that are irradiated by intense beams of energetic ions. The beam parameters considered in this study correspond to the design parameters of the heavy ion beam that will be produced at the Gesellschaft für Schwerionenforschung (GSI), Darmstadt heavy ion synchrotron facility (SIS) in 1999. A few calculations, however, were also done using the beam parameters that are currently available at the SIS. Different values for specific energy deposition including 1, 10, 50, and 100 kJ/g, respectively, have been considered, whereas a number of different pulse lengths, namely, 10, 50, 100, and 200 ns, have been assumed. Various target materials, for example, solid lead, solid neon, and solid hydrogen, have been used. It is expected that this simulation study will be very helpful in the design of efficient targets for the future experiments at the GSI. These experiments will hopefully provide very useful information about many important basic physics phenomena, such as enhanced energy loss of heavy ions in hot dense plasmas, equation-of state (EOS) of matter under extreme conditions, material opacity and shock wave propagation. Another very interesting experiment with important practical implications that could be done at this facility may be the creation of metallic hydrogen by imploding appropriately designed multilayered targets containing a layer of frozen hydrogen. This paper presents the design of such a target, together with implosion simulations of this target using a hydrodynamic simulation model. These simulations show that it may be possible to compress the frozen hydrogen to achieve the theoretically predicted physical conditions necessary for hydrogen metallization (a density of the order of 1 to 2 g/cm3, a temperature of a few 0.1 eV and a pressure of about 2–5 megabar). In some cases, compression of frozen deuterium was also studied. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The new Schwerionen-Synchrotron (SIS)/Experimenteller Speicher-Ring (ESR) heavy ion accelerator facility [Nucl. Instrum. Methods A 278, 7, 19 (1989)], built for basic atomic and nuclear physics at Darmstadt (Federal Republic of Germany), also provides unique possibilities to study rf accelerator and beam/target interaction physics for inertial confinement fusion driven with heavy ion beams. It is the first machine that offers this opportunity. Beam parameters and experiments planned over the next five years are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: In a series of experiments a laser plasma ion source for TA ions has been investigated. The main components were a 3-J CO2 laser, the laser ion source, a 3.2-m beamline, a 90° analyzing magnet, and an ion detector. The FWHM of the CO2 laser pulse was approximately 100 ns, the full duration was about 1 μs. The spot diameter was about 0.2 mm. The charge state distribution has been measured up to 10+. The plasma temperature has been calculated; recombination has been observed. The results will be shown and discussed in detail.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 62 (1987), S. 357-361 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Beams of high-energy heavy ions (Ar and U) from the UNILAC accelerator have been used to excite rare gases at pressures near 1 bar. The dominant spectroscopic feature observed in Ar, Kr, and Xe gases was molecular excimer emission at the second excimer continuum at 130, 150, and 170 nm, respectively. The excimer radiation was studied as a function of time (with respect to the excitation pulse), ion-beam current, pressure, and excitation density. The efficiency of excimer production from heavy-ion-beam energy was found to be several percent. Details of spectral shape, especially the ratio of first-to-second continuum emission, were found to depend on pressure and exciting beam type.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 617-623 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: High current discharge channels can neutralize both current and space charge of very intense ion beams. Therefore, they are considered an interesting solution for final focus and beam transport in a heavy ion beam fusion reactor. At the Gesellschaft fuer Schwerionenforschung accelerator facility, 50 cm long, free-standing discharge channels were created in a 60 cm diameter metallic chamber. Discharges with currents of 45 kA in 2 to 25 mbar ammonia (NH3) gas are initiated by a CO2 laser pulse along the channel axis before the capacitor bank is triggered. Resonant absorption of the laser, tuned to the v2 vibration of the ammonia molecule, causes strong gas heating. Subsequent expansion and rarefaction of the gas prepare the conditions for a stable discharge to fulfill the requirements for ion beam transport. The influence of an electric prepulse on the high current discharge was investigated. This article describes the laser–gas interaction and the discharge initiation mechanism. We found that channels are magnetohydrodynamic stable up to currents of 45 kA, measured by fast shutter and streak imaging techniques. The rarefaction of the laser heated gas is studied by means of a one-dimensional Lagrangian fluid code (CYCLOPS) and is identified as the dominant initiation mechanism of the discharge. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 60 (1992), S. 2475-2477 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The fine-focusing capability of a current-carrying, "active" plasma lens has been demonstracted for the first time. A cylindrically symmetric argon discharge plasma pulsed with an oscillating current of over 20 kA in amplitude served as a current conducting medium. With this plasma lens has been demonstrated for the first time. A cylindrically symmetric argon discharge plasma pulsed with an oscillating current of over 20 kA in amplitude served as a current conducting medium. With this plasma lens the diameter of an incident 2.2-GeV gold ion beam from the linear accelerator UNILAC at GSI-Darmstadt was focused from initially 10 to about 0.25 mm, at a focal length of only 140 mm. The gradient of the azimuthal magnetic field exceeded 120 T/m. The striking features of this first-order and strong-focusing plasma lens favor its use as a precise high-gradient focusing device for high-energy charged particles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 321 (1985), S. 693-694 
    ISSN: 1434-601X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 293 (1979), S. 187-201 
    ISSN: 1434-601X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract K-, L andM-shell ionization cross sections have been measured for 23 elements, 12≦Z≦92, after bombardment with relativistic electrons, 15≦E 065MeV, by means of high resolution semiconductor detectors and a recently developed gas-scintillation proportional counter. For constant electron bombarding energyE 0 the ionization cross sections follow a power law dependence,σ∽Z −α, and forE 0=50MeV we deducedα =2.45±0.02 for theK shell andα=3.00 ±0.09 for theL shell. The observedZ dependence exhibits significant systematic deviations from theoretical predictions which exceed the experimental values up to 15 % at lowZ elements for theK shell and on the average about 11% for theL andM shell. The same behaviour of too low experimental values, i.e. an overestimation by the theory, is observed for the energy dependence of the cross sections for all shells. A scaling behaviour describing theZ andE 0 dependence for allK-, L andM-shell data points is observed which also predicts the experimental values by other groups at lower and higher energies correctly. The comparsion of the measuredLΒ/Lα, andLγ/Lα intensity ratios for highZ elements with the values obtained by other groups in the energy range 0.3≦E0≦1,000 MeV exhibits an increase with bombarding energy that cannot merely be explained by the energy dependence of the subshellionization cross sections for theL shell. An attempt to explain this effect with the change of the Coster-Kronig transition probability is described.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 20 (1999), S. 1325-1330 
    ISSN: 1572-9567
    Keywords: heavy ions ; high energy density ; high-energy laser ; intertial confinement fusion energy ; plasma physics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The energy loss of heavy ions in matter is completely different from the case of laser beams. Whereas laser radiation produces a plasma on the surface of the target and heats the volume mostly by shock waves, heavy ions penetrate deep into the target with an almost-constant energy loss in the beginning and a very high energy loss at the end of the range, the so called “Bragg peak.” This special behavior offers excellent possibilities for the examination of critical points of different materials, the measurement of benchmarks for equations of state, production and detection of X-rays and XUV radiation, investigations in physics of overdense plasma, and many more topics. In particular, heavy ion beams are considered to be a very efficient driver for an inertial confinement fusion power plant. Thus, research on the elementary processes of the energy deposition of heavy ions in matter with respect to inertial fusion energy is of primary interest.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...