ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The Håkon Mosby Mud Volcano (HMMV) is a seafloor mud volcano, having a 1-km-diameter circular shape and a relief of 8–10 m. HMMV is located within a slide scar on the Bjørnøya glacial submarine fan on the SW Barents Sea slope, and is underlain by a 〉6-km-thick Cenozoic sequence. Multichannel seismic data reveal a 1- to 2-km-wide disturbed zone, which extends to a depth of 〉3 km below the HMMV. We relate the zone to the presence of free gas. The seismic data are compatible with an intrasedimentary sourced mud volcano related to the glacial sedimentation history and mass movements.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The high thermal gradient and heat flow 〉1000 mW m-2 on Håkon Mosby Mud Volcano are ascribed to rapid transport of pore water, mud, and gas in a narrow, deep conduit within a 3.1-km-thick glacial sediment unit. The instability is caused by rapid loading of dense glacial sediments on less dense oozes. Changes in pressure–temperature conditions by sudden, large-scale downslope mass movement may induce structural deformation, opening transient pathways from the base of the glacial sediments to the sea floor. This model may also explain slope maxima elsewhere on the margin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  SeaMARC II (11- to 12-kHz) side-scan sonar revealed hundreds of small strong-backscatter spots, tens to 500 m in diameter, along the lips of the Bear Island fan slide valley. New bathymetry, deep-tow side-scan, deep-tow profiles, heatflow, and gravity cores were collected for ground-truth. These mounds are probably mud diapirs (or mud-built mounds) typically 10–75 m high, formed by glacial sediment mobilized by Late Pleistocene slide events. The mounds are arranged along NNE trending lines, suggesting control by intrasedimentary faults ca. 0.5–1 km apart. Diapirs examined on the Vøring Plateau exhibit WNW structural control. No heatflow anomaly was found in four stations on or next to diapirs in either area.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-12-04
    Description: Highlights • Increased glacial sedimentation rates do not generate sufficient overpressure to trigger a landslide. • Simulated overpressures for different sedimentation scenarios do not significantly differ. • A glacimarine layer underneath rapidly-deposited sediments is important for overpressure build-up. • An earthquake of M6.9 or larger at a short distance from the Tampen Slide headwall could have triggered the Tampen Slide. Abstract Trough mouth fans are environments characterized by high sediment supply during glacial stages and the occurrence of large-scale instabilities. The geological record indicates that several of these environments have failed repeatedly resulting in large submarine landslides. The roles of sedimentation rate, weak layers, glacial loading and unloading as well as seismic activity on triggering megaslides in trough-mouth-fan systems is still unclear. A better understanding of the preconditioning factors, triggers and consequences of these landslides is crucial due to the hazard they pose to coastal communities and offshore industries. In this paper, we focus on the North Sea Trough Mouth Fan, which is the result of massive glacial sediment input delivered to the shelf edge through the Norwegian Channel, southeast Nordic Seas margin. The Tampen Slide, one of several large paleo-landslides that have happened within the North Sea Trough Mouth Fan, took place at c. 130 ka (end of MIS 6), and removed an estimated 1800 km3 of sediment. Here, we use boundary conditions from the Tampen Slide and 2D Finite Element Modeling (Abaqus software from Simulia) to evaluate the effects of variations in sedimentation rates as well as sediment properties on the generation of excess pore pressure, fluid flow, and slope stability along the axis of the trough-mouth-fan system. The model domain, 40 km in length and 2 km in height, is dominated by glacigenic debris flows and glacimarine sediment deposits. We use geotechnical data measured on samples of glacigenic and glacimarine sediment deposits from the nearby Ormen Lange gas field area to constrain the model. We evaluate the stability of the slope under various scenarios, including constant sediment loading, episodic changes in sedimentation rates and abrupt pulses in sediment delivery for a 61 kyr period (MIS 6). The models show that increased sedimentation rates during glacial stages do not generate sufficient excess pore pressure to set off a landslide. Furthermore, the simulated overpressures for the different sedimentation scenarios do not significantly differ at the end of the model runs. The results also highlight the importance of a basal glacimarine sediment layer underneath the rapidly-deposited sediments for the build-up of overpressure. Consequently, this glacimarine sediment layer has the inherited potential to act as a weak layer facilitating instability. However, as overpressure due to sediment deposition alone does not result in slope failure, we couple the preconditioned slope with earthquake ground shaking. Based on attenuation models, an earthquake of approximately M6.9 or larger at a short distance from the Tampen Slide headwall could have triggered the landslide. Therefore, we suggest glacial sedimentation and a glacimarine sediment layer to represent preconditioning factors, and seismic shaking as the final trigger mechanism for the Tampen Slide, i.e. similar to the situation that lead to the development of the Storegga Slide in the same area.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-04-28
    Description: Using high-resolution bathymetric and shallow seismic data from the North Sea, we have mapped hitherto unknown glacial landforms that connect and resolve longstanding gaps in the Quaternary geological history of the basin. We use these data combined with published information and dates from sediment cores to reconstruct the extent of the Fennoscandian and British Ice Sheets (FIS and BIS) in the North Sea during the last phases of the last glacial stage. It is concluded that the BIS occupied a much larger part of the North Sea than previously suggested and that North Sea ice underwent a dramatic disintegration ~18,500 yr ago. This was triggered by grounding-line retreat of the Norwegian Channel Ice Stream, which debuttressed adjacent ice masses, and led to an unzipping of the BIS and FIS accompanied by drainage of a large ice-dammed lake. Our reconstruction of events provides an opportunity to improve understanding and modeling of the disintegration of marine-based ice sheets, and the complex interplay between ocean circulation and the cryosphere.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-08-13
    Description: This study describes the distribution and stratigraphic range of the Upper Palaeozoic–Mesozoic succession in the NE Atlantic region, and is correlated between conjugate margins and along the axis of the NE Atlantic rift system. The stratigraphic framework has yielded important new constraints on the timing and nature of sedimentary basin development in the NE Atlantic, with implications for rifting and the break-up of the Pangaean supercontinent. From a regional perspective, the Permian–Triassic succession records a northwards transition from an arid interior to a passively subsiding, mixed carbonate–siliciclastic shelf margin. A Late Permian–earliest Triassic rift pulse has regional expression in the stratigraphic record. A fragmentary paralic to shallow-marine Lower Jurassic succession reflects Early Jurassic thermal subsidence and mild extensional tectonism; this was interrupted by widespread Mid-Jurassic uplift and erosion, and followed by an intense phase of Late Jurassic rifting in some (but not all) parts of the NE Atlantic region. The Cretaceous succession is dominated by thick basinal-marine deposits, which accumulated within and along a broad zone of extension and subsidence between Rockall and NE Greenland. There is no evidence for a substantive and continuous rift system along the proto-NE Atlantic until the Late Cretaceous.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-08-14
    Description: This study describes the distribution and stratigraphic range of the Upper Palaeozoic–Mesozoic succession in the NE Atlantic region, and is correlated between conjugate margins and along the axis of the NE Atlantic rift system. The stratigraphic framework has yielded important new constraints on the timing and nature of sedimentary basin development in the NE Atlantic, with implications for rifting and the break-up of the Pangaean supercontinent. From a regional perspective, the Permian–Triassic succession records a northwards transition from an arid interior to a passively subsiding, mixed carbonate–siliciclastic shelf margin. A Late Permian–earliest Triassic rift pulse has regional expression in the stratigraphic record. A fragmentary paralic to shallow-marine Lower Jurassic succession reflects Early Jurassic thermal subsidence and mild extensional tectonism; this was interrupted by widespread Mid-Jurassic uplift and erosion, and followed by an intense phase of Late Jurassic rifting in some (but not all) parts of the NE Atlantic region. The Cretaceous succession is dominated by thick basinal-marine deposits, which accumulated within and along a broad zone of extension and subsidence between Rockall and NE Greenland. There is no evidence for a substantive and continuous rift system along the proto-NE Atlantic until the Late Cretaceous.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...