ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-08
    Description: Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's high-emission scenario RCP8.5. We use a suite of nine coupled carbon–climate Earth system models with embedded marine ecosystem models and focus on the spread between the different models and the underlying reasons. Globally, NPP decreases in five out of the nine models over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30° S and 30° N), with individual models simulating relative changes between −25 and +40 %. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification leading to reduced phytoplankton growth. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduce NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while NPP in the remaining model changes by less than 0.5 %. While models consistently project increases NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but it is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve the models and the concepts and data that guide their development.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: Quantitative distributions of major functional PFTs of the world ocean improve the understanding of the role of marine phytoplankton in the global marine ecosystem and biogeochemical cycles. Information on the attenuation and light penetration depth tells us the extend of phytoplankton primary production and until which depth satellite obtain information on ocean colour. In this study, global ocean color satellite products of different dominant phytoplankton functional types' (PFTs') biomass and the vibrational Raman scattering (VRS, i.e. the inelastic light scattering at water molecules, for different wavelength ranges retrieved from hyperspectral satellite data of the satellite sensor SCIAMACHY (SCanning Imaging absorption spectrometer for Atmospheric ChartographY on board ENVISAT, operating 2002-2012) using Differential Optical Absorption Spectroscopy applied to phytoplankton (PhytoDOAS) are presented (see also Vountas et al. 2007, Bracher et al. 2009, Sadeghi et al. 2012a).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    International Ocean-Colour Coordinating Group
    In:  EPIC3(Reports of the International Ocean-Colour Coordinating Group (IOCCG) ; 15), Dartmouth, Nova Scotia, B2Y 4A2, Canada., International Ocean-Colour Coordinating Group, 156 p., pp. 1-156, ISBN: ISSN 1098-6030
    Publication Date: 2014-07-23
    Description: The concept of phytoplankton functional types has emerged as a useful approach to classifying phytoplankton. It finds many applications in addressing some serious contemporary issues facing science and society. Its use is not without challenges, however. As noted earlier, there is no universally-accepted set of functional types, and the types used have to be carefully selected to suit the particular problem being addressed. It is important that the sum total of all functional types matches all phytoplankton under consideration. For example, if in a biogeochemical study, we classify phytoplankton as silicifiers, calcifiers, DMS-producers and nitrogen fix- ers, then there is danger that the study may neglect phytoplankton that do not contribute in any significant way to those functions, but may nevertheless be a significant contributor to, say primary production. Such considerations often lead to the adoption of a category of “other phytoplankton” in models, with no clear defining traits assigned them, but that are nevertheless necessary to close budgets on phytoplankton processes. Since this group is a collection of all phytoplankton that defy classification according to a set of traits, it is difficult to model their physi- ological processes. Our understanding of the diverse functions of phytoplankton is still growing, and as we recognize more functions, there will be a need to balance the desire to incorporate the increasing number of functional types in models against observational challenges of identifying and mapping them adequately. Modelling approaches to dealing with increasing functional diversity have been proposed, for example, using the complex adaptive systems theory and system of infinite diversity, as in the work of Bruggemann and Kooijman (2007). But it is unlikely that remote-sensing approaches might be able to deal with anything but a few prominent functional types. As long as these challenges are explicitly addressed, the functional- type concept should continue to fill a real need to capture, in an economic fashion, the diversity in phytoplankton, and remote sensing should continue to be a useful tool to map them. Remote sensing of phytoplankton functional types is an emerging field, whose potential is not fully realised, nor its limitations clearly established. In this report, we provide an overview of progress to date, examine the advantages and limitations of various methods, and outline suggestions for further development. The overview provided in this chapter is intended to set the stage for detailed considerations of remote-sensing applications in later chapters. In the next chapter, we examine various in situ methods that exist for observing phytoplankton functional types, and how they relate to remote-sensing techniques. In the subsequent chapters, we review the theoretical and empirical bases for the existing and emerging remote-sensing approaches; assess knowledge about the limitations, assumptions, and likely accuracy or predictive skill of the approaches; provide some preliminary comparative analyses; and look towards future prospects with respect to algorithm development, validation studies, and new satellite mis- sions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013); 6833-6850, doi:10.5194/bg-10-6833-2013.
    Description: We investigated the mechanisms of phytoplankton competition during the spring bloom, one of the most dramatic seasonal events in lower-trophic-level ecosystems, in four state-of-the-art plankton functional type (PFT) models: PISCES, NEMURO, PlankTOM5 and CCSM-BEC. In particular, we investigated the relative importance of different ecophysiological processes on the determination of the community structure, focusing both on the bottom-up and the top-down controls. The models reasonably reproduced the observed global distribution and seasonal variation of phytoplankton biomass. The fraction of diatoms with respect to the total phytoplankton biomass increases with the magnitude of the spring bloom in all models. However, the governing mechanisms differ between models, despite the fact that current PFT models represent ecophysiological processes using the same types of parameterizations. The increasing trend in the percentage of diatoms with increasing bloom magnitude is mainly caused by a stronger nutrient dependence of diatom growth compared to nanophytoplankton (bottom-up control). The difference in the maximum growth rate plays an important role in NEMURO and PlankTOM5 and determines the absolute values of the percentage of diatoms during the bloom. In CCSM-BEC, the light dependency of growth plays an important role in the North Atlantic and the Southern Ocean. The grazing pressure by zooplankton (top-down control), however, strongly contributes to the dominance of diatoms in PISCES and CCSM-BEC. The regional differences in the percentage of diatoms in PlankTOM5 are mainly determined by top-down control. These differences in the mechanisms suggest that the response of marine ecosystems to climate change could significantly differ among models, even if the present-day ecosystem is reproduced to a similar degree of confidence. For further understanding of plankton competition and for the prediction of future change in marine ecosystems, it is important to understand the relative differences in each physiological rate and life history rate in the bottom-up and the top-down controls between PFTs.
    Description: T. Hashioka, Y. Yamanaka and T. Hirata, were supported by the Grant-in-Aid for the Global COE Program from MEXT, by the Global Environment Research Fund (S-5) from the Ministry of the Environment and by the Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation from JSPS. S. Doney, I. Lima and S. Sailley acknowledge support from C-MORE (NSF EF-0424599).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 18 (1985), S. 1410-1418 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 18 (1985), S. 131-138 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 86 (1964), S. 20-22 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Microsystem technologies 6 (2000), S. 149-153 
    ISSN: 1432-1858
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Technology
    Notes: Abstract  In this paper, a prototype of 2 mm-diameter micro-cycloid gear system fabricated by the multi-exposure LIGA technique is presented. The gear system is composed of a casing and three vertically stacked disks and gears. Each part consists of three different levels. The first level, 40 μm high, was fabricated by UV-lithography, and the second as well as the third level, 195 μm and 250 μm high respectively, were processed by aligned deep X-ray lithography (DXL). The alignment error between two DXL-processed layers has been measured to be within ±5 μm range. As a result of the height control process, the deviation of structural height has been maintained within ±3 μm range for the UV-lithography-processed structures, and ±10 μm for the DXL-processed structures. Preliminary tests of gear assembly have been implemented with 125 μm-diameter commercially available glass fiber, and the further efforts are being carried out.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 304-306 (Feb. 1999), p. 333-340 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...