ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; pso4-1 mutant Sporulation ; DNA repair ; Meiotic recombination Induced mutagenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have evaluated the effect of the Saccharomyces cerevisiae pso4-1 mutation in sporulation and DNA repair during meiosis. We have found that pso4-1 cells were arrested in an early step of meiosis, before premeiotic DNA synthesis, and hence did not produce spores. These results suggest that the PSO4 gene may act at the start point of the cell cycle, as do some SPO and CDC genes. The pso4-1 mutant cells are specifically sensitive to 8-MOP- and 3-CPs-photoinduced lesions, and are found to be severely affected in meiotic recombination as well as impaired in the mutagenic response, as previously described for mitosis. This means that the PSO4 gene is important for the repair 8-MOP-photoinduced lesions, mainly double-strand breaks, and the processing of these lesions into recombinogenic intermediates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: pso4-1 mutant ; Recombinational repair ; Double-strand breaks ; Mutagenesis ; 8-methoxypsoralen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Thepso4-1 mutant was characterized as deficient in some types of recombination, including gene conversion, crossing over, and intrachromosomal recombination. The mode of interaction betweenpso4-1 andrad51 and betweenpso4-1 andrad52 mutants indicated that thePSO4 gene belongs to theRAD52 epistasis group for strand-break repair. Moreover, the presence of thepso4-1 mutation decreased 8-MOP-photoinduced mutagenesis of therad51 andrad52 mutants. Complementation tests using heterozygous diploid strains showed that thePso4 protein might interact with theRad52 protein during repair of 8-MOP photolesions. Thepso4-1 mutant, even though defective in inter- and intea-chromosomal recombination, conserves the ability for plasmid integration of circular and linear plasmid DNA. On the other hand, similar to therad51 mutant,pso4-1 was able to incise but did not restore high-molecular-weight DNA during the repair of cross links induced by 8-MOP plus UVA. These results, together with those of previous reports, indicate that thePSO4 gene belongs to theRAD52 DNA repair group and its product participates in the DNA rejoining step of the repair of cross-link lesions, which are crucial for induced mutagenesis and recombinogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0983
    Keywords: Key words pso4-1 mutant ; Recombinational repair ; Double-strand breaks ; Mutagenesis ; 8-methoxypsoralen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The pso4-1 mutant was characterized as deficient in some types of recombination, including gene conversion, crossing over, and intrachromosomal recombination. The mode of interaction between pso4-1 and rad51 and between pso4-1 and rad52 mutants indicated that the PSO4 gene belongs to the RAD52 epistasis group for strand-break repair. Moreover, the presence of the pso4-1 mutation decreased 8-MOP-photoinduced mutagenesis of the rad51 and rad52 mutants. Complementation tests using heterozygous diploid strains showed that the Pso4 protein might interact with the Rad52 protein during repair of 8-MOP photolesions. The pso4-1 mutant, even though defective in inter- and intra-chromosomal recombination, conserves the ability for plasmid integration of circular and linear plasmid DNA. On the other hand, similar to the rad51 mutant, pso4-1 was able to incise but did not restore high-molecular-weight DNA during the repair of cross links induced by 8-MOP plus UVA. These results, together with those of previous reports, indicate that the PSO4 gene belongs to the RAD52 DNA repair group and its product participates in the DNA rejoining step of the repair of cross-link lesions, which are crucial for induced mutagenesis and recombinogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0983
    Keywords: Key words Psoralen sensitivity ; Cytochrome oxidase ; Saccharomyces cerevisiae ; Oxidative stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The yeast gene PSO7 was cloned from a genomic library by complementation of the pso7-1 mutant's sensitivity phenotype to 4-nitroquinoline-1-oxide (4NQO). Sequence analysis revealed that PSO7 is allelic to the 1.1-kb ORF of the yeast gene COX11 which is located on chromosome XVI and encodes a protein of 28-kDa localized in the inner mitochondrial membrane. Allelism of PSO7/COX11 was verified by non-complementation of 4NQO-sensitivity in diploids homo- and hetero-allelic for the pso7-1 and cox11::TRP1 mutant alleles. Sensitivity to 4NQO was the same in exponentially growing cells of the pso7-1 mutant and the cox11::TRP1 disruptant. Allelism of COX11 and PSO7 indicates that the pso7 mutant's sensitivity to photoactivated 3-carbethoxypsoralen and to 4NQO is not caused by defective DNA repair, but rather is due to an altered metabolism of the pro-mutagen 4NQO in the absence of cytochrome oxidase (Cox) in pso7-1/cox11::TRP1 mutants/disruptants. Lack of Cox might also lead to a higher reactivity of the active oxygen species produced by photoactivated 3-carbethoxypsoralen. The metabolic state of the cells is important for their sensitivity phenotype since the largest enhancement of sensitivity to 4NQO between wild-type (WT) and the pso7 mutant occurs in exponentially growing cells, while cells in stationary phase or growing cells in phosphate buffer have the same 4NQO resistance, irrespective of their WT/mutant status. Strains containing the pso7-1 or cox11::TRP1 mutant allele were also sensitive to the oxidative stress-generating agents H2O2 and paraquat. Mutant pso7-1, as well as disruptant cox11::TRP1, harboured mitochondria that in comparison to WT contained less than 5% and no detectable Cox activity, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0983
    Keywords: Key words Saccharomyces cerevisiae ; SGS1 ; Helicase ; DNA repair
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The Saccharomyces cerevisiae Sgs1 protein, together with Schizosaccharomyces pombe Rqh1 and the human Bloom and Werner proteins, is a DNA helicase of the Escherichia coli RecQ family. Mutation of SGS1 causes premature aging in yeast cells, including the accumulation of extrachromosomal rDNA circles. We have recently shown that Sgs1p interacts with the DNA repair Rad16p protein and is epistatic to Rad16p for UVC, 4-NQO and H2O2 lesions. Therefore we tested sgs1 strains containing mutations in the helicase and C-terminal domains. We demonstrate here that the helicase activity of the Sgs1 is important for most elements of the sgs1 mutation phenotype, including sensitivity to UVC, 4-NQO, H2O2, MMS and hydroxyurea.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0983
    Keywords: Key words Glutathione ; Yap1 ; H2O2 ; t-BOOH ; Glucose repression ; Oxidative stress ; Diauxic shift
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Resistance of haploid yeast to hydrogen peroxide and to tert-butylhydroperoxide strongly increases when 4% glucose is replaced by glycerol or ethanol as the carbon source of the complex medium. Using a GSH1-promoter-lacZ-fusion reporter construct we could demonstrate that GSH1 is one of the genes that are up-regulated during the shift from fermentative to oxidative metabolism. A gsh1 mutant did not exhibit respiratory growth resistance to H2O2, whereas it was only slightly impaired in acquiring resistance against t-BOOH in the same experimental conditions. An isogenic Δyap1 mutant, although more sensitive to oxidative stress than the wild-type (WT), could increase resistance to both peroxides by a similar factor as observed for the WT when shifted from 4% glucose to a non-fermentable carbon source. This indicates that in this case induction of resistance to oxidative stress is independent from Yap1 and from the Yap1-mediated stress response via the STRE motif.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine; TFL) is a pre-emergence, soil-incorporated herbicide that has been in agricultural use since the early 1960s and is moderately persistent in soil. The purpose of this study was to isolate and characterise TFL-resistant bacteria from a soil in which this pesticide has been used for the last four decades and to determine their ability to degrade TFL using HPLC. Eight bacteria were isolated by repeated subculture in liquid medium with TFL as carbon source and a ninth (isolate 9) from growth around TFL crystals on solid medium. The bacteria from enriched liquid culture were identified by biochemical tests and 16S rDNA sequencing. In a mineral salts medium with 0.1% succinate, 0.1% yeast extract and 50 mg l−1 TFL, reductions in the level of pesticide of 24.6% for Klebsiella sp., 16.4% for Herbaspirillum sp., 25.0% and 16.0% for two strains of Bacillus sp. and 21.0% for unidentified isolate number 9 were obtained after 30 days. These were similar to the level obtained using a known TFL-degrading bacterium, Brevundimonas diminuta (NCIMB 10329). Three Pseudomonas sp. and one Bacillus sp. reduced levels by less than 5%. The five positive isolates can be used to study the biochemical and molecular biology of TFL biodegradation with the aim of optimising the degradative ability of one or more of the isolates for future use in bioremediation processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0983
    Keywords: DNA repair ; Heat shock ; Hyperthermia ; Mutagenesis ; pso3-1 mutant ; Psoralen ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A putative tolerance, induced by heat shock (HS), to the lethal and mutagenic effects of 8-methoxypsoralen (8-MOP) photoaddition and hyperthermia was analyzed in Saccharomyces cerevisiae using the wild-type strain N123 and the isogenic DNA repair-deficient mutant pso3-1. In wild-type cells, the HS (38°C for 1 h) did not modify either the survival or the mutation frequency observed after 8-MOP photoaddition, even though it conferred protection against the lethal effect of hyperthermia (50°C). In the pso3-1 mutant, HS induced an increase of the survival, and a decrease of the mutation frequency, after 8-MOP photoaddition and it also protected against the lethal effect of hyperthermia. The responses induced by HS were specific for 8-MOP photoaddition, since they were not observed after 254 nm ultraviolet-light damage. These results indicate that the protection conferred by HS depends of the type of lesion, and operates through the induction of different repair processes. In the pso3-1 mutant, HS could channel the repair intermediates to and error-free repair pathway.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0983
    Keywords: pso and rad mutants ; Repair ; S. cerevisiae ; 8-methoxypsoralen ; 3-carbethoxypsoralen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The mutant allele pso3-1 of Saccharomyces cerevisiae confers sensitivity to treatment with UV365nm (UVA) light-activated mono- and bi-functional psoralens. When pso3-1 is combined in double mutants with selected rad and pso mutant alleles and subjected to 8-MOP+UVA treatment, epistatic interaction with regard to survival is observed with pso1, pso2, and rad3. With the same treatment the combination of pso3-1 with rad6 and rad52 leads to synergistic interaction. For the monofunctional agent 3-carbethoxypsoralen (3-CPs) the analysis of double mutants yields the same results as with the bifunctional 8-methoxypsoralen (8-MOP) with the exception of the pso1-1pso3-1 double mutant. Here we find an additive interaction, i.e., the sensitivities of both parental strains are summed in the double mutant, which indicates a different substrate specificity of the repair activity encoded by the PSO1 and PSO3 genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 18 (1990), S. 387-393 
    ISSN: 1432-0983
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...