ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0730-2312
    Keywords: hyperthermia ; calreticulin ; chaperone complexes ; prompt glycosylation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Acute heat stress leads to the glycosylation of a “prompt” stress glycoprotein, P-SG67/64, identified as calreticulin. In the present study, we used immunoprecipitation to investigate the interactions of P-SG/calreticulin with other proteins during cellular recovery from heat stress. In heat-stressed CHO and M21 cells, both glycosylated and unglycosylated P-SGs interact with HSP90, GRP94, GRP78, and the other prompt stress glycoprotein, P-SG50, in an ATP-independent manner. Specificity of HSP-P-SG interactions was determined by chemical cross-linking with the homo-bifunctional agent DSP (3,3′-dithiobis[succinimidyl propionate]). Characterization of the cross-linked complexes involving calreticulin and heat shock proteins (HSPs) showed an average mass of 400-600 kDa by gel filtration chromatography. Overall, the consistent association of glycosylated and unglycosylated calreticulin with P-SG50 and unglycosylated HSPs suggests that P-SG/calreticulin is an active member of the cast of glycone/aglycone chaperones that cooperate to achieve cellular recovery from acute heat stress. J. Cell. Biochem. 69:30-43, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: hyperthermia ; thermotolerance ; protein glycosylation ; subcellular distribution ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cellular heat stress results in elevated heat-shock protein (HSP) synthesis and in thermotolerance development. Recently, we demonstrated that protein glycosylation is also an integral part of the stress response with the identification of two major stress glycoproteins, GP50, associated with thermotolerance, and P-SG67, the “prompt” stress glycoprotein induced immediately during acute heat stress. In the present study, we characterized the subcellular location and redistribution of these proteins during the cellular injury and recovery phase. In unheated and heated CHO cells, both stress glycoproteins were present in each subcellular fraction isolated by differential centrifugation. However, the subcellular redistribution in the course of cellular recovery after heat stress was specific for each stress glycoprotein. GP50 was present in all subcellular fractions before heat stress, but showed relatively little redistribution after heat stress. By 24 h of recovery following stress, GP50 showed partial depletion from lysosomes and microsomes, and was mainly present in the mitochondria. Glycosylated P-SG67 was redistributed in a more complex fashion. It was seen predominantly in the lysosomes and microsomes immediately following heat-stress, but after 6 h of recovery following heat stress, it largely disappeared from the microsomes and was present mainly in the cytosol. By 24 h of recovery following heat stress, it was found predominantly in the nucleus-rich fraction and mitochondria. The localization of GP50 and P-SG67 by subcellular fractionation is consistent with immunolocalization studies and contrasts with the translocation of HSP70 after heat stress from cytosol to nuclei and nucleoli. These results reflect a characteristic distribution for each stress glycoprotein; their presence in virtually all subcellular fractions suggests multifunctional roles for the various stress glycoproteins in the cellular heat stress response. J. Cell. Biochem. 66:98-111, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The cellular heat shock response leads to the enhanced synthesis of a family of heat shock proteins and the development of thermotolerance. In CHO cells, however, heat shock also leads to enhanced synthesis of a 50 kD glycoprotein and elevated activity of N-acetylgalactosaminyltransferase (GalNAcT). In this study we showed increased GalNAcT activity during thermotolerance expression in all of five mammalian cell lines included in the study. However, there was no simple correlation between cellular heat sensitivity of unheated control cells and basal levels of GalNAcT activity, measured toward the same exogenous acceptor apomucin. Although GalNAcT was elevated in thermotolerant cells, GalNAcT activity itself did not exhibit thermotolerance in terms of reduced sensitivity to heat inactivation. The increase in GalNAcT activity after heating was similar in exponentially growing and plateau-phase cultures and was inhibited neither by cycloheximide nor actinomycin D. However, the inhibitors by themselves also increased GalNAcT activity in unheated control cells. Chemical inducers of ther-motolerance (arsenite and diamide) increased GalNAcT activity, but the increase was modest when compared to that following hyperthermia. In addition to GalNAcT, two other glycosyltransferases with specificity for O-glycans, α1,2-fuco-syltransferase and α2,6-sialyltransferase, also showed increased activity after hyperthermia and during thermotolerance development. Together with previously published data, these results support the hypothesis that heat-induced activation of O-glycan-specific glycosyltransferases plays a physiological role in the cellular heat shock response and in thermotolerance development.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...