ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2018-03-21
    Description: We review and evaluate the design and operation of twenty-seven known autonomous benthic chamber and profiling lander instruments. We have made a detailed comparison of the different existing lander designs and discuss the relative strengths and weaknesses of each. Every aspect of a lander deployment, from preparation and launch to recovery and sample treatment is presented and compared. It is our intention that this publication will make it easier for future lander builders to choose a design suitable for their needs and to avoid unnecessary mistakes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-10-11
    Description: As part of the OMEX I project, nutrient determinations were made on 17 cruises in the region of the Goban Spur and La Chapelle Bank between 46 and 51°N, in all seasons of the year, between 1993–1995. Over this period no change was detectable in the structure of the water masses below the deep winter mixed layer. The N : P (dissolved nitrate-to-phosphate) ratio changed from 16 at 100-m depth to less than 15 at 3300-m depth. At intermediate depths nutrient and oxygen data indicate the presence of Mediterranean Outflow water overlying Labrador Sea Water at its most eastern extension. Estimated maximum levels of production in the spring bloom are the total N-limited new primary production equivalent between 24 and 41 gC m−2, the equivalent maximum diatom production is 11 gC m−2. Measurements during the spring bloom suggest a conversion factor of 1 μM nitrate to 1 μg l−1 chlorophyll, at the shelf break, which is consistent with other recent measurements in European shelf seawaters. Sediment trap data suggest that 80% (5.4 g m−2) of the opal produced in the spring bloom dissolved before reaching the sediment trap at 600 m. A comparison of the winter and summer profiles for dissolved silicon suggests a similar dissolution of 9±3 g opal m−2 above 300-m depth. Measurements of dissolved organic carbon (DOC) in September 1994 show an enrichment of 7 μM-C above the seasonal thermocline relative to the winter values (52±4 μM). In winter dissolved organic nitrogen represents 40% of the pool of total dissolved nitrogen. There is no consistent evidence of an increase in the concentration of DON during summer. Measurements of nitrate in surface waters in January 1994 show that concentrations off-shelf vary with the temperature of the water and are related to the depth of winter mixing. Mixing in surface waters is discontinuous at the shelf break, demonstrating the degree to which exchange across the shelf break is limited even in winter. OMEX winter measurements of nitrate concentrations can be used to estimate the flow of water across the shelf break that would be required to maintain the nitrogen balance in the North Sea at a steady state. The estimate is 0.6 Sv (1 Sv=106 m3 s−1), which is similar to an earlier estimate of a total flow of 1.7 Sv based on salt budgets (cf. Huthnance, Deutsche Hydrographische Zeitschrift, 49 (1997) 153).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0077-7579
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-01-01
    Description: Settling nitrogen fluxes intercepted by sediment traps on the mid-slope and in the deep basin off Somalia show a consistent annual range of 3.4 {+/-} 0.2{per thousand} in their stable isotope composition. Seasonal minima in {delta}15N of 3.7{per thousand} are associated with the moderate N fluxes derived from coastally upwelled water, which is rapidly carried offshore along eddy margins passing over the mooring sites during the SW monsoon (June-September). Coastal upwelling, offshore transport and deep wind mixing cease at the end of the SW monsoon, leading to enhanced utilization of the up to 20 {micro}M of NO3- in the photic layer, maxima in the N export flux, and an increasing {delta}15N by Rayleigh distillation. Yet as stratification develops, nutrient exhaustion follows and export production collapses as the {delta}15N increases to over 7{per thousand}. Cyanobacterial N2 fixation probably diminishes the {delta}15N by 0.4-1.6{per thousand} during the autumn intermonsoon (November-December) when settling N fluxes are lowest. Nutrient utilization remains high during the NE monsoon (January-March), when nutrient entrainment by deep wind mixing results in enhanced N export with maxima in {delta}15N of up to 7.4{per thousand}. Annual N fluxes have virtually the same {delta}15N of 6.0{per thousand} in all traps despite considerable differences in both N flux and {delta}15N between the traps during the year and at different depths. In comparison with the annual {delta}15N of 6.0{per thousand} arriving on the sea floor, core-top sediments are enriched by +0.6{per thousand} on the upper slope (at 487 m) increasing to +2.9{per thousand} in the deep basin (at 4040 m), whereas the N sediment burial efficiency declines from about 17% to 3%. It appears that the extent of oxic decomposition at the sediment-water interface is the most likely cause of such isotope enrichment. Similar positive gradients in {delta}15N with bottom depth have been reported from other continental margin transects and are generally attributed to increased nutrient utilization in the photic ocean with distance offshore. As for Somalia, nitrogen isotope fractionation as a result of oxic decomposition on the bottom rather than nutrient utilization at the ocean surface may account for the observed increase of sedimentary {delta}15N down continental margins in general.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2019-06-28
    Description: We provide an overview of the role of biological processes in the Benthic boundary layer (BBL) and in sediments on the cycling of particulate organic material in the Goban Spur area (Northeast Atlantic). The benthic fauna, sediment and BBL characteristics were studied along a transect ranging from 208 to 4460 m water depth in different seasons over 3 years. Near-bottom flow velocities are high at the upper part of the slope (1000–1500 m), and high numbers of filter-feeding taxa are found there such that organic carbon normally passing this area during high flow conditions is probably trapped, accumulated, and/or remineralised by the fauna. Overall metabolism in shelf and upper slope sediments is dominated by the macrofauna. More than half of the organic matter flux is respired by macrofauna, with a lower contribution of metazoan meiofauna (4%) and anoxic and suboxic bacterial mineralisation (21%); the remainder (23%) being channelled through nanobiota and oxic bacteria. By its feeding activity and movement, the macrofauna intensely reworks the sediments on the shelf and upper slope. Mixing intensity of bulk sediment and of organic matter are of comparable magnitude. The benthos of the lower slope and abyssal depth is dominated by the microbiota, both in terms of total biomass (〉90%) and carbon respiration (about 80%). The macrofauna (16%), meiofauna (4%) and megafauna (0.5%) only marginally contribute to total carbon respiration at depths below 1400 m. Because large animals have a lower share in total metabolism, mixing of organic matter within the sediments is reduced by a factor of 5, whereas mixing of bulk sediment is one to two orders of magnitude lower than on the shelf. The food quality of organic matter in the sediments in the shallowest part of the Goban Spur transect is significantly higher than in sediments in the deeper parts. The residence time of mineralisable carbon is about 120 d on the shelf and compares well with the residence time of the biota. In the deepest station, the mean residence time of mineralisable carbon is more than 3000 d, an order of magnitude higher than that of biotic biomass.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: The benthic diagenetic model OMEXDIA has been used to reproduce observed benthic pore water and solid phase profiles obtained during the OMEX study in the Goban Spur Area (N.E. Atlantic), and to dynamically model benthic profiles at site OMEX III (3660-m depth), with the sediment trap organic flux as external forcing. The results of the dynamic modelling show that the organic flux as determined from the lowermost sediment trap (400 metres above the bottom) at OMEX III is insufficient to explain the organic carbon and pore water profiles. The best fitting was obtained by maintaining the seasonal pattern as observed in the traps, while multiplying the absolute values of the flux by a factor of 1.85. The “inverse modelling” of diagenetic processes resulted in estimates of total mineralisation rate and of degradability of the organic matter at the different stations. These diagenetic model-based estimates are used to constrain the patterns of lateral and vertical transports of organic matter. Using the observed degradability as a function of depth, we show that the observed organic matter fluxes at the different depths are consistent with a model where at all stations along the gradient the same vertical export flux occurs at 200 m, and where organic matter sinks with a constant sinking rate of around 130 m d−1. If sinking rates were higher, in the order of 200 m d−1, the observations could be consistent with an off-slope gradient in export production of approximately a factor of 1.5 between the shallowest and deepest sites. The derived high degradability of the arriving organic matter and the consistency of the mass fluxes at the different stations exclude the possibility of a massive deposition, on the margin, of organic matter produced on the shelf or shelf break. However, other hypotheses to explain the patterns found in the sediment trap data of both OMEX and other continental margin study sites also suffer from different inconsistencies. Further, close examination of the flow patterns at the margin will be needed to examine the question.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...